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HIGHLIGHTS

A project is underway at Oak Ridge National Laboratory which has
as its objective the identification of models available for environmen-
tal radiological assessments; evaluation of model structure, simplify-
ing assumptions and data bases; estimation of their uncertainties; and,
if possible, the recommendation of the models and parameters which are
best suited to particular assessment situations. When néeds are identi-
fied, recommendations are also made for further environmental and bjo-
medical research.

The purpose of this report is to present recommendations concerning
the models and parameters best suited for assessing the impact of radio-
nuclide releases to the environment by breeder reactor facilities.

These recommendations are based on the model and parameter evaluations
performed during this project to date. Seven different areas are
covered in separate sections of the report. These sections may be sum-
marized as follows:

The Gaussian plume model continues to be appropriate for most
estimates of atmospheric dispersion when the dispersion parameters
which are used account for the release height and terrain condi-
tions under coneideration. Ground deposition and plume depletion
processes can be parameterized through the use of the deposition

velocity.

The terrestrial food chain model assumes equilibrium conditions
and requires the input of empirically derived transfer coefficients.
Wherever possible this report describes the statistical distribu-

tion of each of these transfer coefficients for a given radionu-

clide.

ix




A two dimensional, K-theory model assuming wno sorption of the
radionuclidez’g seems appropriate for many hydrologic transport

caleulations.

If sorption and sediment transport are important considerations,
however, more complicated modeZsS4 are needed to estimate the

transport in surface water systems.

For assessment purposes, the bioaccumulation factor may be used to
relate the concentration of a radionuclide in water to its concen-
tration in aquatic foodstuffs. Bioaccumulation factors associated
with 32 elements are tabulated for mavine and freshwater fish and

invertebrates.

The internal radiation dose to man depends in part on the quantity
of radionuclides incorporated into the body from food, water and/or
air, and hence intake rates of these materials are important.

Adult intake factors are presented for fruits, vegetables, grains,

meats, fish, poultry, milk, other liquids, and air.

Fifty-year dose commitment factors from inhalation and ingestion

of potentially significant radionuclides in breeder reactor fuel
ecycles are presented for lungs, total body, ovaries, total endo-
steal cells, and testes. These calculations are based on the

latest criteria provided by the Intermational Commission on Radio-
logical Protection and other recognized authorities. Also tabulated
are B and photon external dose conversion factors for body surface,
lungs, ovaries, skeleton, testes, and total body due to immersion

in contaminated air and exposure to contaminated surfaces.

The methodologies currently used at ORNL for estimating the dose
to man from airborne releases of 5H and o are delineated. How-
ever, these methodologies are presently undergoing a critical
review as part of another project at ORNL. The methodologies out-

lined in this report may be modified wpon completion of that

review.
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Work on the model evaluation project is continuing at this time.
* As this work proceeds, modification of the recommendations presented in
this report may be made to reflect the Tatest findings of the project
staff.
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1. INTRODUCTION

Cﬁarles W. Miller

Currently, a number of environmental transport and dose calculation

models employing different data bases and assumptions are available for
the assessment of the radiological impact of routine and accidental dis-
charges. The model evaluation project initiated at Oak Ridge National
Laboratory (ORNL) has had as its objectives identification of these
models; evaluation of their structure, simplifying assumptions and data
bases; estimation of their uncertainties; and, if possible, recommenda-
tion of the models and parameters which are best suited to particular
assessment situations. Where needs are identified, recommendations are
also made for further environmental and biomedical research. The models
examined in this project to date include those developed for the predic-
tion of atmospheric and hydrologic transport and deposition, terrestrial
and aquatic food-chain bioaccumulation, and internal and external dosim-
etry.

The purpose of this particular report is to make recommendations
concerning models and parameters for use in assessing the impact of
breeder reactor radiocactive discharges to the environment. These recom-
mendations are based on the results of the model evaluations project to
date. It should be noted, however, that this project is still underway,
and these recommendations may be adjusted as new information is analy-
zed.

This report contains summaries of the recommendations for each of
the transport and dosimetry areas listed above. These summaries reflect

the work of those individuals who have contributed significantly to the




project. Further details concerning the models and parameter values
discussed may be found in the literature cited.

‘For assessment purposes, the simplest model which can be acceptably
validated is deemed the most suitable for a given set of conditions.]
The models considered in this report are based heavily on the recommenda-
tions made by the model evaluation workshop2 held as part of this project.
Additional analyses of model uncertainty were also used in selecting
models for inclusion in this report.3

Whenever possiblie, the input parameter values used in assessment
models should be based on site-specific information. This, however, is
often not practical. In the absence of site-specific information,
default values must be chosen for each model input parameter. Often,
only a single value is chosen for each parameter of interest. In reality,
however, each input parameter has a distribution of values associated
with it.!

During the course of the model evaluation project, data for a
number of parameters have been examined in an attempt to estimate the
distribution of values associated with a given parameter.' However, it
was generally found that few of the parameters analyzed have a data base
large enough to represent the true distribution. The assumption that
the available data are representative of the true population of the
parameter value of interest is also crucial as the data considered do
not necessarily represent unbiased samp]es.4

In this report, information on the estimated distribution associated

with a given parameter value is presented wherever possible. If the

data for a given parameter were lognormally distributed, the data were




log-transformed to produce a normal distribution, and estimates of the
population mean u and standard deviation o of the logarithms were de-
termined. If the data were found to be normally distributed, the population
mean X and standard deviation (S.D.) were estimated. If this information

is available for a given parameter, the cumulative probability associated

1,4 The values

with any value chosen for the parameter can be determined.
of the various parameters to be used in an assessment calculation will
depend on the cumulative probability desired in the final answer. There-
fore, recommendation of a single value for any parameter for use in
assessment calculations biases model predictions. Before choosing a
paraméter value an assessor should consult the cited literature to determine
the potential effect of the limitations noted above on the final results.

Such an in-depth analysis has not yet been performed for all parameters
and all elements considered in this report. For these situations, the
parameter values currently in use at ORNL have been entered and their
origin cited. These values may change, however, as this project continues.

The dose conversion factors given in this report are based on model
calculations rather than observations. It is not possible to validate
these models because of the impracticality of measuring dose in human
subjects. These models, however, are based on the best animal and human
data currently available.

A separate section in this report is devoted to the dosimetry of 3H

14C. These nuclides are often of special interest because of the

and
importance of hydrogen and carbon in biological systems and because they

are important effluents of various fuel cycles. Methodologies for

assessing the dose to man from these nuclides are currently being evaluated




by another project at ORNL. This report presents the methodology currently
used for assessment purposes at ORNL. This methodology may be modified,
however, as the evaluation continues.
As mentioned previously, work on this project is continuing.
Current efforts are focused in three major areas:
1. comparison of predictions from various environmental transport
models with measured field data to estimate the uncertainty
in model output;
2. continued determination of distributions associated with
model input parameter values;
3. development of recommendations for needed environmental and
biomedical research.
As this work continues it may result in modification of the information

contained in this report.
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2. ATMOSPHERIC DISPERSION AND DEPQSITION

Charles W, Miller

One of the principal ways in which radionuclides from breeder
reactor facilities reach the environment is through discharges to the
atmosphere. These discharges result in doses to man as a result of:

1. expésure to the contaminated air; and

2. exposure to surfaces and ingestion of foodstuffs contamin-

ated by radionuclides removed from the plume by deposition

processes.
2.1 Atmospheric Dispersion

Atmospheric dispersion calculations provide estimates of air
concentration resulting from atmospheric discharges of radionuclides.
These air concentrations are then used to calculate doses to man.

2.1.1 The Gaussian plume model

The Gaussian plume mode]1 is the most widely used method of estimating

downwind air concentrations of radionuclides released to the atmosphere.z’3

4

For

It is also the most often verified atmospheric dispersion model.

a continuous point source and invariant meteorology, this model is

given by
x = =3 — exp [- 1/2 (”—)2 - 1/2(1—)2] : (2.1)
™o, o, o, oy
where
x = ground-level air concentration (Ci/m3),
Q = release rate (Ci/sec),
H = height of release (m),




mean wind speed over the height of the mixing Tayer (m/sec),

fand
I}

standard deviation of a Gaussian distribution in the cross

Q
It

wind y and vertical z directions, respectively (m).
For estimating the impact of routine (i.e., continuous) radionuclide
releases, the average ground-level concentration in air over a sector

22.5° wide is often used. It is given by

2.032 Q i\
X = ———  exp 3“]/2 (0— i ) (2.2)
XUuo z
z
where
x = the downwind distance of interest, m;
u = average wind speed during time period of interest.

The Gaussian plume has a number of theoretical 1imitations.5
However, when properly used it has been found to be a very practical
tool for dispersion modeling. It is

1. mathematically simple and flexible,

2. ' in accord with much, but not all, diffusion theory, and

3. a reliable framework for the correlation of both field studies

and mathematical and physical modeling studies of atmospheric
5

diffusion.

2.1.1.1 Dispersion parameters. It has been found that the dispersion

parameters, sy and S, need to be carefully specified when using the

6,7

Gaussian plume model. A number of empirically determined graphs of

sy and s, as a function of downwind distance and atmospheric stability
8

have been proposed.” Geip et al.g have published a useful set of com-

parisons between some of these sets of graphs.




Whenever possible, site-specific measurements should be used to

10

s specify oy and o_. When sets of standard curves are used instead,

z
at least two such sets should be used, one for surface releases and one
for elevated releases. The Pasquill-Gifford curves] adjusted for
averaging time and surface roughness have been suggested for use with

the for'merm’n (Table 2.]); For elevated releases, the curves suggested

by Geig et al. or those measured at Brookhaven National Laboratow]2

10,11 (1ap1e 2.2).

have been recommended
As noted above and in Tables 2.1 and 2.2, oy and g, depend on

atmospheric stability. A number of different methods for c]assifying

stability have been proposed, but these methods often give significantly

different results when applied to the same meteorological data set.]a"]4
Until enough data become available to select the best method of classifying
stability, the user of the Gaussian plume model must exercise care in

- choosing stabilities. The selection of a stability category alone can
result in a factor of four difference between the lowest and highest

annual average air concentration estimated from a given set of oy and o
13,14

z

curves.

2.1.1.2 Release height. The effective release height, H, is also

a critical parameter in Eqs. (1) and (2).6’7 The value of H depends on

more than just the physical height of the stack, h:]5
H=h+ hpr - ht -C , (2.3)
where
hpr = rise of plume above the release point due to buoyancy and

1

momentum,




10

Table 2.1. Coefficients for specifying the Pasquill-Gifford
system of dispersion parameters for six stability categories

Atmospheric stability category

Coefficient? A B C D E F
3 -0.023 -0.015  -0.012 -0.0059 -0.0059 -0.0029
a, 0.35 0.25 0.18  0.11 0.0881 0.0541
b, 0.88 -0.99 -1.19 -1.35  -2.88 -3.80
b, -0.15 0.82 0.85  0.79 1.26 1.42
by 0.15 0.017 0.0045 0.0022 -0.0421 -0.0551
a

Q
!

= (a] Tn x + az)x

. Qj%g-exp(b1 + by In X + by % x)

Q
I

>
1

downwind distance, m.
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ht = maximum terrain height (above the stack base) between the
release point and the point for which the calculation is
being made (ht > 0),
C = downwash correction factor.
Values of hpr are usually calculated through the use of models such as

16

those suggested by Briggs. Models have also been proposed for calcu-

lating CI.‘5 The need to include estimates of hpr’ ht’ and C in estimates
of H for a given radiological assessment will depend on the particular
faci]ity under consideration and its Tocatijon.

2.1.1.3 Radioactive decay. The Gaussian model, as expressed by

Egs. (2.1) and (2.2), assumes no change in the species of material
released as it is being transported downwind. This, of course, is not
the case when the released material is radioactive. As a result, air
concentrations of radionuclides calculated using the model should be
corrected to account for decay of the material during transit and subse-
quent buildup of daughter products.]7

2.1.2 Other atmospheric dispersion models

There are a number of situations commonly encountered in radio-
logical assessments for which the Gaussian plume model may not apply or
may be difficult to parameterize. These include instances involving
complex terrain, long range transport, time-varying meteorology, and
variable release rates. As a result, a large number of more complex,
seemingly more realistic, dispersion models have been developed. However,
to run properly, these models often require a much more extensive input
data base than the Gaussian model, a computer with large storage capacity,

and a long computer running time for each simulation desired. These




13

conditions can severely limit the practicality of using a more complex
model in assessment activites. The trajectory model]8 is gaining accep-

19 In

tance as a tool for estimating dispersion on a continental scale.
general, however, more field data are needed to specify clearly when
a given complex model should supplement the Gaussian plume model in

radiological assessments.
2.2 Deposition

Particulates and reactive gases may deposit on the surface of the
earth through the processes of dry and wet deposition. These processes
affect doses to man from atmospheric releases of radionuclides in two
ways:

1. deposited material serves as a source of surface and/or food

chain contamination;

2. deposition results in a reduction in the amount of material

transported downwind in air through plume depletion.

2.2.1 Dry deposition

Dry deposition is the process by which particles and reactive gases
deposit on various surfaces (soil, grass, leaves, etc.) via impingement,
electrostatic interactions, chemical reactions, and other processes.

The rate of deposition d(Ci/m2 - sec) is given by20
d =y Vg R (2.4)

where

ground-level air concentration (Ci/m3),

>
]

deposition velocity (m/sec).
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The deposition velocity defined in Eq. (2.4) is a transfer factor
relating an air concentration to a surface deposition rate. Field
measurements of Vys however, are generally based on measured concen-
trations in vegetation cut at a specific height above ground.m’22
Thus, an estimate of V4 appropriate for the total deposit on a unit
area basis is derived from a V4 specific for deposition onto vegetation
by]7

Vy (total) = Vg (vegetation)/R ' (2.5)
where

R = fraction of the total material being deposited which is

intercepted by the surface of interest.

Values of V4 (vegetation) for forage grasses have been determined:23

1. 0.02 m/sec for reactive gases (molecular iodine),

2. 0.001 m/sec for small particulates (<4 um diam), and

3. 0.0001 m/sec for relatively unreactive gases (CH3I).

Using a mean forage grass interception fraction value of R = 0.57 (Sect.
3) results in the following values of vy (total):

1. 0.035 m/sec for reactive gases,

2. 0.0018 m/sec for small particulates, and

3. 0.00018 m/sec for relatively unreactive gases.

If the plume traverses surfaces other than grasslands, other values of
22

V4 (total) should be considered if they are available.

2.2.2 Wet deposition

Wet deposition is the process by which particles or gases are
scavenged from a plume by rain or snow and deposited on ground surfaces.
The rate of deposition on ground surfaces from these processes, w, 1S

often estimated by24
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® =0 X4 L (2.6)

where

©n
"

fraction of material scavenged from a vertical column of air
per unit time (sec']),

average concentration in vertical column (Ci/m3),

Xva ~
L = height of vertical column (m).
The value chosen for L is often the depth of the tropospheric mixing
1ayer.24

It has also been suggested that the wet deposition rate for long-

term average situations can be calculated by using Eq. (2.4) and a wet

deposition velocity Vi which is given byH
_ kP
VW = 'X— = er N (2.7)
0
where
. k0 = surface level concentration in the precipitation (Ci/m3),
X, = surface level air concentration (Ci/m3),
p = amount of precipitation per unit time (m/year),
w, = 9 = washout ratio.

X
0
A comparison of results from these two methods (Egs. 2.6 and 2.7) using

annual average meteorological data for Oak Ridge, Tennessee, indicates

that beyond 1 km downwind from the source there is little difference

25

between them.”™ For considering wet deposition from a single event,

however, Eq. (2.6) is the more appropriate method to use.1]

. 2.2.3 Plume depletion

Deposition processes deplete the airborne plume as it travels

downwind. The most common method of accounting for this removal is
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reducing the release rate of the material. In the case of the Gaussian

model [Eq. (2.1)] this new release rate Q' is given for dry deposition by

ki u o
0 A

H\Z
\1/2 vy(total)  x exp[-]/Z,(;;) ]
Q' =Q exp;-(—) — dx'$ . (2.8)
A number of other methods of accounting for plume depletion have been
proposed, but until validation data become available for determining

which one is really best, the continued use of Eq. (2.7) seems reason-

ab]e.25

If wet deposition is estimated using Eq. (2.6) and a scavenging co-
efficient ¢', the reduced release rate is given by24

Q' = Qexp(-e't) , - (2.9)

where t is the time required for the plume to reach a given point down-
wind, and ¢' is averaged over the entire time period of interest, in-
cluding periods without precipitation. If Eq. (2.7) is used to estimate
wet deposition, however, Eq. (2.8) may be used td estimate plume depietion
by substituting Vu for Vg

2.2.4 Gravitational settling

Equations (2.4) and (2.8) apply when the gases or particulates in
the plume are small enough not to be significantly affected by gravity
as they travel downwind. If the plume contains larger particles,
however, the gravitational settling may be approximated by tilting the

plume downward. This is done by replacing the effective stack height H
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gravitational fall velocity (m/sec),

<
]}

downwind distance of interest (m).
vV X
It must be specified that H - —8—-3_0.

2.3 Duration of Release

The point-source Gaussian plume model, Eq. (2.1) and (2.2) with
the modifications discussed above, attempts to define a mean concentration

discussed above, attempts to define a mean concentration field relative

5

to a fixed location over some re1ative1y long period of time.” The

averaging time of the model is that of the diffusion data upon which
dispersion parameters are based. Not all sets of dispersion parameters

have the same release or sampling time. For example, the Pasquill-

10

Gifford curves are based on a sampling duration of 3 minutes = while

the Julich parameters are based on releases of generally 1 hr duration.g

Often times one is interested in calculating concentrations for
averaging times other than the one applicable for the dispersion

5,10

parameters being used. It has been suggested that this can be

accomplished by modifying oy according to the following relationship:

SyA (t_A)q (2.10)
tg

horizontal dispersion parameter average over some time period
of interest, tA’ and
o, = original value of the horizontal dispersion parameter based

on diffusion data averaged over some time period t

B’
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Reasonable values for q have been found to be in the range of 0.25 - 0.3
for 1 hr < tA < 100 hr and approximately equals 0.2 for 3 min
< tA <1 hr.5’]0 A similar relationship could be applied to 9, but
such variations in a, should not extend beyond a few kilometers downwind
of the release point.

For calculating average concentrations over long time periods,
such as a season or a year, Eq. (2.2) is generally used with a weighting
for the fraction of the time that the wind blows toward the point of
interest.5 Joint frequency distributions of wind direction, wind speed,
and atmospheric stability can be constructed for many locations from
climatological records.

The methods discussed in this chaper must be further modified to
calculate dispersion from sudden, explosive, or very short term (i.e.,
tB < 3 min) releases of material to the atmosphere. In general, the
values of oy and o, used for such releases are considered to be different
than the values presented above for longer time re]eases.] Also,
dispersion in the downwind direction must be taken into consideration
for very short term releases. However, virtually nothing is known about
the downwind dispersion parameter, ox.5 Accidental releases from breeder
reactor facilities have generally been considered to be of long enough

duration for the methods considered in this section to be apph’ed.26
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3. TERRESTRIAL FOOD CHAIN TRANSPORT

Laura M. MeDowell-Boyer
C. F. Baes IIIT

A number of computer codes are available with which terrestrial
transport of radionuclides through food chains following release to the
atmosphere may be quantitatively estimated. The majority of these
models were derived from the HERMES computer code,] which was developed
for assessing transport in chronic, or routine, release situations.2

Distinct from these HERMES-based models is TERMOD,3

a model developed

for assessing terrestrial transport under routine release conditions or
following acute, or accidental, radionuclide releases to the environment.
A11 of these models, however, utilize equilibrium transfer coefficients

to quantify the transport between food chain compartments following
deposition of airborne radibnuc]%des on soil or interception by vegetation.
The purposes of this section are first to define the parameters for

which values are needed in currently implemented terrestrial transport

models at Oak Ridge National Laboratory (ORNL), and secondly, to present

the parameter values used in these models.

3.1 Terrestrial Models

Terrestrial transport models currently in use at ORNL for assess-
ing routine radionuclide releases are implementations of models provided
in the October 1977 draft of the U. S. Nuclear Regulatory Commission
(NRC) Regulatory Guide 1.109, Appendix c.%  These latter models were

originally provided for assessing transport of light-water reactor

effluents but have been used to assess terrestrial nuclide transport in
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general. For breeder reactor effluents, it may be desirable to consider
resuspension of nuclides following discontinuation or interruption of
plant operation, when this phenomenon may be a significant source of
airborne nuclides, and to consider buildup of daughter nuclides as was
mentioned previously (Sect. 2.1.1.3). These models consider the con-
centration of radionuclides in vegetation as a result of deposition onto
plant tissues and root uptake of activity initially deposited on soil,
as well as concentrations in milk and beef following grazing on con-
taminated vegetation by dairy and beef cattle. Many shortcomings of
equilibrium models such as the following are recognized, and thus, work
is underway to clarify, evaluate, and possibly rectify some of these
shortcomings. However, at present, our discussions will be restricted to
these currently impliemented models.

3.1.1 Concentrations in vegetation

The following equation4 is used for estimating the concentration

Cg(r, o) of nuclide i in and on vegetation at the location (r, 8)

CY(r, 0) = d.(r, o) R[T - eXP(-KEite)] . Biv[] - exp(-xitb)]

i i vaEi Pxi

exp(-xith), (3.1)

where
Cg(r, o) is measured in pCi/kg;
di(r, 8) is the deposition rate of radionuclide i onto ground at
location (r, 6), in pCi/mz—hr;
R is the fraction of depositing activity intercepted by crops,
dimensionless;

1

As is the radioactive decay constant of nuclide i, in hr ',
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Aps is the effective removal rate constant for radionuclide i
from crops, in hr_], where AEi = Ai + Aw,
A 1is the removal rate constant for physical loss by weathering,
in hr—];
t_ is the time period that crops are exposed to contamination
during the growing season, in hours;
Y. is the agricultural productivity (yield) of the edible portion,
in kg/mz; |
B.., is the concentration factor for uptake of radionuclide i from
soil by edible parts of crops, in pCi/kg plant tissue per
pCi/kg dry soil;
tb is the period of long-term buildup for activity in soil, in
hours;
P is the effective "surface density" for the top 15 cm of
soil, in kg (dry soi])/mz;
ty is a hoidup time that represents the time interval between
harvest and consumption of the food, in hours.
Regulatory Guide 1.109 (ref. 4) makes a distinction between the value of
te’ Yv’ and th appropriate for forage grasses and those appropriate for
crops and leafy vegetables. The ORNL implementation of Eq. (3.1) (ref. 5)
further distinguishes the C¥ calculated for pasture grasses from a C¥
calculated for fresh vegetables and produce consumed by man by inputting
separate values of Biv and R or R/yv for each of these categories. For

pasture grasses, Yv(]) and Biv(])’ based on dry weight concentrations in

both vegetation and soil, are used for Yv and Biv' When calculating con-

centrations in fresh produce consumed by man, Yv(Z) and Biv(2) are used
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for Yv and Biv values, based on fresh-weight concentrations in vegetation
and dry-weight soil concentrations of a nuclide.

3.1.2 Concentrations in milk

The concentration of radionuclide i in milk depends upon the amount
and contamination level of the feed consumed by the animal. The concen-
tration of radionuclide i in the animal's feed is calculated by use of

the equation

v _ P ‘ _ S
Ci(r, g) = fpfsci(r’ p) + (1 fpfs) Ci(r, 0) (3.2)
where

C¥(r, 6) is the concentration of radionuclide i in the animal's feed,
in pCi/kg;
C?(r, 8) is the concentration of radionuclide i on pasture grass
(calculated using Eq. (3.1) with t, = 0), in pCi/kg;

Ci r, 6) is the concentration of radionuclide i in stored feeds (cal-
culated using Eq. (3.1) with t, = 2160 hours (90 days), in pCi/kg;

f is the fraction of the year that animals graze on pasture,
dimensionless;

f_ is the fraction of daily feed that is pasture grass when the
animals graze on pasture, dimensionless. |

Using the value of C¥(r, 8) calculated by use of this equation, the concen-

tration of radionuclide i in milk is estimated as

cM

§(rs @) = Felr, 0)Qp exp(-rite) (3.3)

where

C?(r, 6) is the concentration in milk of nuclide i in pCi/liter;
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CY(r 8) is the concentration of radionuclide i in the animal's feed,
in pCi/kg;

F_is the average fraction of the animal's daily intake of
radionuclide i which appears in each liter of milk, in
days/Titer;

QF is the amount of dry feed consumed by the animal per day, in
kg/day;

tf is the average transport time of the activity from the feed into
the milk and to the receptor, in days;

1

Ai is the radiological decay constant of nuclide i, in days .

3.1.3 Concentrations in meat

The radionuclide concentration in meat (usually beef) depends upon
the amount and contamination level of the feed consumed by the animal,
as in the milk pathway. Using the value of C¥(r, 6) as calculated in

Eq. (3.2), the radionuclide concentration in meat is estimated as

F _ v
Ci(r, 8) = FfCi(r,,e)QF exp(-xits) R (3.4)
where
CF(r, 6) is the concentration of nuclide i in animal flesh, in pCi/kg;

;
Ff is the fraction of the animal's daily intake of nuclide i
which appears in each kilogram of flesh, in days/kg;
C¥(r, o) is the concentration of radionuclide i in the animal's feed,
in pCi/kg;
QF is the amount of dry feed consumed by the animal per day, in

kg/day;

X; 1s the radiological decay constant of nuclide i, in days—];
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tS is the average time (days) from slaughter to consumption.

For concentrations in beef, it is assumed that beef cattle are on open

pasture for the same grazing periods as given for milk cattle.

3.2 Terrestrial Transport Input Parameters

Following are lists of input parameter values currently used at
ORNL in assessing terrestrial transport resulting from routine releases.
These values were derived from empirical data obtained from an ongoing
review of available 1iterature,5 and represent average values over a
wide range of experimental and environmental conditions. Values listed
for the transfer coefficients, Biv(])’ Biv(2)’ Fm’ and Ff, reflect the
current status of this literature review of element-specific data pertinent
to terrestrial transport, and may change when new references become
available and are reviewed.

Not all transfer coefficients reported here have been evaluated in
this project. Values given for these parameters are taken from other

widely used documents.6’7

The derivations of transfer coefficients for
nuclides which have been evaluated are element, rather than nuclide,
specific, so that the data base for some nuclides is not severely
restricted.

The parameters used in the terrestrial transport models described
are designed to represent annually averaged values at equilibrium over a
wide range of environmental conditions. Thus, these average parameters
are best suited for generic assessments, but may be used to preliminarily

assess specific sites when site specific parameters are not available.

Empirical data used in deriving values for these parameters may not
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always reflect annual average or equilibrium cohditions, nor field
conditions when laboratory or otherwise controlled experiments were
conducted. For technetium, appreciable uptake of the element from soil
by plant roots may result in nonequilibrium soil concentrations in
laboratory studies concerning technetium uptake. For this reason and
because the transport model used does not consider soil loss of nuclides
via crop harvest or leaching, the assessment of technetium transport
using the concentration factor approach may result in overestimates of
plant concentrations. Furthermore, empirical data may not adequately
reflect the true distribution of values associated with each parameter
under various conditions.  Thus, caution should be used in the interpretation
of parameter values presented and results generated in implementation of
the mode]s.r

Statistical distributions have been estimated for Yv’ fp, fs’ QF’

and P,8 and values describing the distributions for each of these

parameters are provided here. For B F _, and Ff, an arithmetic mean

iv’ 'm

value was calculated from data obtained from each reference cited.
These mean values were used in deriving an arithmetic mean for all
references collected for a particular element. Statistical distri-
butions have not yet been developed for these latter parameters.

]4C is addressed in Sect. 8 of this

Terrestrial transport of 3H and
report, and thus, transfer coefficients for these nuclides are not

included in this section.

3.2.1 Agricultural productivity by unit area, Yv(]) and Yv(2)

Agricultural productivity, in kg/mz, is given in dry weight in

this report for pasture graéses, Yv(])’ and in fresh weight for leafy
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vegetables and produce ingested directly by man, Yv(2)' This method

of reporting parameter values for YV has been found to be most directly
useful in the transport models used. Table 3.1 presents mean values of
Yv(l) and Yv(2) derived from the review and analysis of agricultural
productivity by Hoffman and Baes along with the u and o, representing
the mean and standard deviation of the log-transformed distribution,

respectively.

3.2.2 1Interception fractions for above-ground plant portions,
R] and R2

The fraction of atmospherically depositing radionuclides inter-
cepted and initially retained on above-ground portions of either forage
crops or leafy vegetables and fresh produce ingested by man is symbol-
ized by R] and RZ’ respectively, where R], R2 < 1. The remaining
fraction deposited on the soil and surfaces other than the vegetation
is merely (1-R]) and (1-R2).

Measurements of R1 for specific values of Yv(]) have been made and
reviewed by Hoffman and Baes and the resultant mean value of R1/Yv(1)
is given in Table 3.1. Measurements of the interception fraction R2
specific for edible portions of leafy vegetables and fresh produce
ingested directly by man are unavailable. It is expected that the value
of R2 will be less than that of R] since vegetable crops are usually
cultivated in rows. On a unit area basis, this spacing of vegetable
crops exposes more surface soil than the dense spacing of forage crops.
Therefore, a value of 0.2 for R2, provided in the USNRC Regulatory Guide

1.109 (ref. 4) is currently being used. These R] and R2 values are

being used for both wet and dry deposition.
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3.2.3 Plant/soil bioaccumulation factor, Biv

Tables 3.2 and 3.3 contain values of Biv(]) and Biv(2)’ represent-
ing the transfer of elements from soil to grass leaves and portions of
vegetables and produce considered edible by man, respectively. The

following definitions of Biv(]) and Biv(Z) apply:

radionuclide concentration in entire above-ground portion
Biv(]) = of plant at maturity per unit dry wt
radionuclide concentration in soil per unit dry wt.

radionuclide concentration in edible portion of
Biv(z) = plant at maturity per unit fresh wt.
radionuclide concentration in soil per unit dry wt.

As was mentioned previously, arithmetic means of results obtained
from empirical studies concerning root uptake for each element are
currently being used for Biv values.

The parameter Biv is interpreted as the elemental concentration
in plant tissues at maturity resulting from an equilibrium soil concen-
tration to which the root are exposed during the growing season. For
Tc, however, appreciable uptake of the element from soil by plant roots
may result in non-equilibrium soil concentrations in laboratory studies
concerning Tc uptake.]4 Because no field data have been reported for
Tc, the appropriate Biv cannot be directly derived. The Biv(z) for Tc
(Table 3.2) is simply a conversion of the Biv(z) value to represent
a dry-weight concentration in forage. No distinction between plant

portions or species was made in this case, due to the lack of empirical -

data on different plant types.




Table 3.2. Values of Biv(]) [(element)
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forage:

(e1ement)soi]] for forage and feed
Element Biv(])a References
Na 2.1 x 107! 6’
4.4 &’
2.4 6’
Mn 1.2 x 107 67
Fe 2.6 x 1073 6
Co 3.8 x 1072 67
Ni 7.6 x 1072 67
Zn 1.6 6b
Sr 1.2 9-12
Y 1.1 x 1072 9,13
Zr 6.8 x 1074 6
Nb 3.8 x 1072 67
Tc 2.0 x 102 14
Ru 1.7 x 107} 9,13
Ag 6.0 x 107! 6”
Sb 4.4 x 1072 67
Te 5.2 67
I 2.0 x 107" 15
Cs 1.5 x 107! 9,11,13,16-20
Ce 3.9 x 1072 9,13
Pm 1.3 x 1073 13
Sm 1.0 x 1072 67
Eu 1.0 x 1072 67
Pb 1.4 x 107 21-24
B 6.0 x 107! 67
Po 4.2 x 1073 25
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Table 3.2. (continued)

Element Biv(])a References
Ra 9.1 x 1072 26-28
Ac 1.0 x 1072 6
Th 2.7 x 1073 29
Pa 1.0 x 1072 67
U 6.1 x 1073 29,30
Np 1.0 x 1072 6
Pu 2.0 x 1073 11,13,30-34
Am 2.1 x 1073 29-31,34
Cm 4.8 x 107° 32

a is derived for dry-weight concen-

B.
tration%v$l)forage, hay, or feed and in soil.

bDerived by converting fresh-weight plant
concentrations (C,) to dry-weight, assuming 25%
dry matter content, and dividing this value by
dry-weight soil concentrations, CS.

“Converted from a given fresh-weight concen-
tration factor to dry-weight, by assuming 25%
dry matter for plants.

dSee preceding discussion.
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Table 3.3. Values of By oy [(element) jopro ticqie’

(e]ement)soi]] for vegetables, fruits, and grains

Element Biv(2) References
Na 5.2 x 1072 67
1.1 67
5.9 x 107" 67
Mn 2.9 x 1072 67
Fe 6.6 x 107 6’
Co 9.4 x 1073 67
Ni 1.9 x 1072 6°
Zn 4.0 x 107 67
Sr 2.9 x 107! 9,11,12,35
Y 4.3 x 1073 9
7r 1.7 x 107% 67
Nb 9.4 x 1073 6°
Tc 5.0 x 10" 14°
Ru 1.6 x 1072 9
Ag 1.5 x 107" 6°
Sb 1.1 x 1072 6’
Te 1.3 | 6
I 5.5 x 107° 15
Cs 1.1 x 1072 9,11,19,20,35,36
Ce 6.2 x10°3 9
Pm 2.5 x 1073 67
Sm 2.5 x 1073 67
Eu 2.5 x 1073 67
Pb 3.9 x 1073 21,23,37,38
B 1.5 x 107 67
Po 2.6 x 107% 25
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Table 3.3. (continued)

Element Biv(Z)a References
Ra 1.3 x 1072 26,27,39,40
Ac 2.5 x 1073 6
Th 3.5 x 107% 8
Pa 2.5 x 1073 67
U 2.9 x 1074 30,41
Np 2.5 x 1073 67
Pu 2.2 x 1074 11,30,33,42-44
Am 4.0 x 10°% 29
Cm 1.7 x 1073 15

aij(z) is derived for a fresh-weight concen-
tration in eédible plant tissues and a dry-weight
concentration in soils.

bDerived by dividing the fresh-weight plant
concentration (C_) by dry-weight soil concentra-
tions (CS). P

“See preceding discussion.
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3.2.4 Milk transfer coefficient, Fm

The milk transfer coefficient, Fm’ represents the fraction of the
total daily intake of a nuclide which is transferred to a liter of
the cow's milk at equilibrium. Values of Fm can be derived from a
variety of reported data according to the methodologies described by
Ng et a1.7

Determinations of Fm (Table 3.4) were made from literature sources
reporting empirically-derived results, whenever available. However,
for many elements, the well-documented Titerature review by Ng et a1.7
was the primary literature source. References in which the chemical
form of the nuclide administered orally to the cow was clearly atypical
of forms found in the environment were excluded from the analysis of
Fm. As for the analysis of Biv’ the values of Fm given in Table 3.4

are element- rather than nuclide-specific.

3.2.5 Meat transfer coefficient, Ff

The meat-transfer coefficient Ff represents the fraction of the
total daily intake of a nuc]ide‘which is transferred to a kilogram of
muscle in the meat producing animal at equilibrium. It is assumed that
equilibrium conditions exist when slaughter occurs.

A review of the available literature allowed the derivation of
values of F. for beef cattle (Table 3.5). Values of Fe based on immature
cattle (less than 6 months of age) were exluded from analysis when data

for adult cattle were available. Data for other ruminant species were

included when literature references for cattle were unavailable.
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Table 3.4. Values of Fm [(e]ement)mi]k: elemental
daily intake], day/liter

Element Fma References
Na 3.5 x 1072 7
1.6 x 1072 7
1.6 x 1072 7
Mn 8.4 x 107° 7
% Fe 5.9 x 107° 7
‘ Co 2.0 x 1073 7
N 1.0 x 107° 7
Zn 1.0 x 1072 7
Sr 2.4 x 1073 45-48
Y 2.0 x 107° 7
Zr 8.0 x 1072 7
Nb 2.0 x 1072 7
Tc 9.9 x 1073 7
Ru 6.1 x 1077 7
Ag 3.0 x 1072 7 :
Sb 2.0 x 107° 7
Te 2.0 x 1074 7
I 1.0 x 1072 7,8
Cs 5.6 x 1073 49-51
Ce 2.0 x 107° 7
Pm 2.0 x 1072 7
Sm 2.0 x 107° 7
Eu 2.0 x 107° 7
Pb 9.9 x 107° 52-59
B 5.0 x 1074 7
Po 1.2 x 1074 58
Ra 5.9 x 1077 59 )
Ac 2.0 x 107° 7
Th 5.0 x 1070 7




39

Table 3.4. (continued)

Element Fma References
Pa 5.0 x 107° 7
U 1.2 x 1074 60
Np 5.0 x 107° 7
Pu 4.5 x 1078 61,62
Am 2.0 x 107° 7
Cm 2.0 x 1072 7

The F . is derived from fresh-weight concen-

trations in milk and dry-weight concentrations in
forage, feed, or hay.
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Table 3.5. Values of Ff [(e]ement)beef: elemental
daily intake], day/kg

Element Ffa References
Na 3.8 x 1072 &
5.7 x 1072 &
1.3 x 107 &’
Mn 1.0 x 1073 6"
Fe 5.0 x 1072 6
Co 1.7 x 1072 6’
Ni 6.7 x 1073 6
2 b
In 3.8 x 10 6
Sr 3.0 x 1077 15
Y 5.8 x 1075 67
Ir 4.3 x 10°¢ &
Nb 3.5 x 107 &
-3 b
Te 8.7 x 10 6
Ru 1.8 x 1073 15
Ag 2.2 x 1072 &P :
-3 b
Sb 5.0 x 10 6§
Te 9.6 x 1072 62
I 7.0 x 1073 15
Cs 1.4 x 1072 63
Ce 6.0 x 1074 15
-3 b
Sm 6.3 x 10 6
Eu 6.0 x 1073 &?
Pb 9.1 x 1074 57
. ) b
Bi 1.7 x 10 6
Po 4.0 x 10°3¢ 64-66
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Table 3.5. (continued)

Element Ffa References
Ra 5.5 x 107" 65,67
Ac 1.6 x 1070 d
Th 1.6 x 107° d
Pa 1.6 x 107° d
U 1.6 x 107° d
Np 1.6 x 107° a
Pu 4.1 x 1077 15,62
Am 1.6 x 107° 15
Cm 1.6 x 1076 15

“The Ff is derived from fresh-weight concen-

trations in beef and dry-weight concentrations
in forage, feed, or hay.

bDerived by converting fresh-weight plant
concentrations (Cy) to dry-weight, assuming 25%
dry matter conten%, such that

- Cmeat (fresh) « 1
f Cp (dry) QF

“Yalues given are based on sheep, caribou,
and reindeer data and the associated intake rates
for each.

F

dValues are assumed to be the same as those
for curium and americium.
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3.2.6 Animal feed consumption (QF), grazing patterns (fp, f
and effective soil surface density (P)

S

D’ fs’ and P (defined in

Section 3.1) are the means of their respective statistical distributions

Values used for the parameters QF’ f

as described by Hoffman and Baes. These means are given in Table 3.6,

along with the associated p and o for the log-transformed distribution.

3.2.7 Time parameters te’ tb’ th’ tf, and ts

The parameters te, th’ tf, and tS have all been defined in Section
3.1, and the values used at ORNL are 1isted in Table 3.7. The values

listed were taken from the draft Regulatory Guide.4

The parameter tb’
representing the period of Tong-term buildup for activity in soil, was
not assigned a specific value. The value of tb is Teft to the user's

discretion.
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Table 3.6. Values of QF’ fp, fs’ and P used in
terrestrial transport models at ORNL

Parameter Mean u o S.D. Units Reference
QF“ 15.6 2.6 kg/day (dry) 8
fpa 0.40 0.22 8
) fa 0.43 0.13 8
S
pb 215 5.3 0.11 kg/m? 8

%parameter normally distributed; therefore, standard deviation (S.D.)
is given.

bDistribution for P derived from a lognormal distribution of soil
bulk density p(g/cm3).
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Table 3.7. Values of te’ th, tf, and ts used
in terrestrial transport models at ORNL

Parameter Value Units Reference
a
te te(1) 720 hr 4
te(2) 1440 hr
b,
th : th(]) 0 hr 4
th(Z) 2160 hr 4
th(3) 336 hr 4
tf 4 day 4
t 20 day 4

a . . :
te(]) applies to forage grasses; te(2) applies to crops
and leafy vegetables.
bth(]) applies to forage; th(2) applies to stored feed
for animals; th(3) applies to leafy vegetables; and th(4)
applies to produce.
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4. SURFACE WATER TRANSPORT

C. A, Little

This section will briefly discuss models which we feel are best
suited to assess radionuclide releases from breeder reactors to hydrologic
(surface water) systems. The models which we consider are two-dimensional,
either longitudinal-transverse or longitudinal-vertical. The models also
differ in their capability to account for sorptive effects on the
pollutant. The Yotsukura-Sayre model (longitudinal-transverse) does
not consider sorptions, but the SERATRA (longitudinal-vertical) and
FETRA (longitudinal-transverse) models do consider sorption and sediment
transport. These models and their parameter needs will be discussed

separately.

4.1 Model Without Sorption
The Yotsukura-Sayre mode],] a continuous release equilibrium model,

is basically the same as that of Yotsukura and Cobb.2

These models
employ an orthogonal curvilinear coordinate system to describe the
geometrical configuration of the channel. In its most fundamental form

the model can be expressed as foHows:3

s R P IR (4.1)
IX oy Yy N i’
where

€, = concentration of radionuclide i(Ci m_3),

u = stream velocity (m sec']),

D = stream depth (m),

x = distance downstream (m) ,

y = distance across stream (m),
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K lateral turbulent diffusion coefficient (mzsec']), and

y
A

radioactive decay constant = 0.693/half life (sec—]). -
0f these parameters, all but Ky can be measured directly in the

stream of concern. However, Yotsukura and Cobb2 showed that the variable

diffusion factor, Ky u D2, may be replaced by a constant factor, Ky u D2
where
2_ 1 ¢Q 2
= = K D™ d R 4.2
Ky u D q g y q (4.2)

Q is the total river discharge and q is the transverse cumulative dis-

charge measured outward from the near shore. Further, Yotsukura and

Cobb2 suggest that Ky can be determined using the formula of E]der4:

*

K = D . 4.3
y =B DU (4.3)

where 8 is a unitless constant, D is stream depth in m and u* is the
average shear velocity in the y dimension. Therefore, the only constant
which may be considered not site specific for the model is the constant
B. The vaiue of g in flume studies has been shown to range from about
0.11 to 0.23.2 A value of g = 0.72 was found in the Columbia River,5
but Fischer6 showed that secondary currents could increase the value of
8 by as much as a factor of 10. A value of B = 0.6 has been observed in
the Missouri River.7

A model user who is interested in predicting the maximum concentra-
tion downstream from the same point release should choose a value of
g = 0. A zero 8 would result in no diffusion and, as seen from Eq.
(4.1), would simplify the prediction of activity concentration to a
function of decay and downstream distance. This would effectively

eliminate the consideration of transverse (or lateral) distance and

maximize the activity concentration at any point in midstream.
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A model user who is not interested in a conservative estimate will
be faced with deciding which value of 8 to use. From the review of
Yotsukura and Cobb2 we conclude that 8 may range from approximately
-0.1 to 0.72 (and perhaps higher). We would suggest, then, that a user
interested in accurate predictions of pollutant concentrations in water

should use a value of B greater than 0.1 and less than 1.0.

4.2 Models with Sorption
If the pollutant being assessed is not in a soluble form or has a
marked tendency to adsorb to sediments, as do many actinides, the user may
wish to use a model which is capable of predicting sediment or particulate
contaminant transport. For such an application, we suggest considering

usage of the FETRA model discussed by Onishi and Wise®

in spite of the
large number of input parameters it requires. FETRA and a similar
model, SERATRA,9 both estimate sediment and pollutant concentratibns
downstream from some release site as a function of time after the release.
However, SERATRA estimates concentrations longitudinally and vertically,
while FETRA considers longitudinal and lateral (transverse) distribution
of the pollutant. These models are both much more complex than the
Yotsukura model mentioned above, and therefore, SERATRA and FETRA will
be discussed in general terms, neglecting specific parameters.

Both SERATRA and FETRA are time-dependent models which consist of
three submodels: (1) a sediment transport model, (2) a dissolved
contaminant transport model, and (3) a particulate contaminant transport

model.

The sediment transpoft sections of FETRA and SERATRA are capable of

accounting for effects of: (1) convection and dispersion, (2) fall
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velocity and cohesiveness, (3) deposition on the river bottom, (4) river
bed erosion, and (5) tributary flow. Necessary data include: (1) con-
centration of each of j sediment types per unit volume of water; (2)
time after release; (3) longitudinal, lateral, and vertical velocities;
(4) particle fall velocity of j sediment types; (5) longitudinal,
lateral, and vertical diffusion coefficients of j sediment types; (6)
river width; (7) flow depth; (8) sediment deposition and erosion rates
for j sediment types; and (9) estimates of several coefficients dealing
with erodibility, critical shear stress, and impaction probability on
the river bottom for each of j sediment types.

Basically, the same data are required for the particulate con-
taminant transport submodel. However, this submodel also takes into
account the adsorption and desorption of a dissolved pollutant by
sediments and removal of the poliutant by chemical or biological means.

The dissolved pollutant submodels of FETRA and SERATRA also account
for convection and dispersion of pollutant, adsorption and desorption of
pollutant from water, chemical and bio]bgica] decay of pollutant, and
the effects of tributaries. In addition to data required for the two
previous submodels, the dissolved contaminant model needs information
about the following: (1) distribution coefficient between dissolved and
particulate contaminant adsorbed on each of the j sediment types; (2)
amount of particulate pollutant per unit mass of j sediments; (3) mass
of contaminant dissolved per unit volume of water; (4) longitudinal,
lateral, and vertical diffusion coefficients for dissolved contaminant;
and (5) chemical and biological decay rate of contaminant.

As the reader has likely noticed, the amount of input data needed

for the FETRA and SERATRA models is great. Given the diversity of input
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data and the difficulty in measuring some of the input parameters, it
is doubtful that either FETRA‘or SERATRA would be used for a one-time

. assessment of a pollutant release into a river, such as an accidental
release unless prior input data had previously been collected. However,
if the model input data were available for a particular site, the models
would be well suited to estimate pollutant transfer downstream following
some accidental release. We suggest FETRA and SERATRA for those situations

in which pollutant sorption to sediments may be important or when the

pollutant is a particulate.
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5. AQUATIC FOOD CHAIN TRANSPORT

Roberta W. Shor

5.1 The Basic Model

Models that describe the transport of radionuclides from liquid

effluents to man via aquatic foods generally take the form]'3
Raiip = Vapti Bipliay >
where
Raijp = dose to organ j of an individual of age group a
due to nuclide i via aquatic food p (millirem/year),
Uap = ingestion rate of aquatic food p by an individual of
age a (kg/year),
) Ci = concentration of radionuclide i in water (pCi/]iter),'
Bip = the equilibrium ratio of the concentration of radionuclide
i in aquatic food p to its concentration in water (liter/kg),
Daipj = dose conversion factor for age group a, radionuclide 1,

aquatic food p, and organ j (millirem/pCi).
Methods of calculating C_i are considered in Sect. 4 of this report;

U. s considered in Sect. 6, and D is considered in Sect. 7. The

ap aipj

bioaccumulation factor Bip is considered in the remainder of this section.

5.2 The Biocaccumulation Factor
The transfer of radionuclides from contaminated water to human food
» through various tropic levels of aquatic life is represented by a single

parameter, the bioaccumulation factor, B Its value is usually tabulated

. ip’

by nuclide for several tropic levels in freshwater and seawa’cer'.4'7




Reported values for Bip vary commonly by an order of magnitude—in

some cases by three and four orders of magnitude. Examples of the larger

range of values are cesium in freshwater fish and managese in both fresh-

water and marine maHuses.S'7

The accumulation of radionuclides in aquatic food occurs by compiex
interactions of biological, chemical and physical factors including some
that can confound the assumption of equilibrium in the definition of

B. (see 5.1). 1In addition, although nuclides concentrate in different

ip
tissues, the tabulations do not always designate the tissue. When dif-
ferent Bip's of an organism are known, the values given here refer to

edible parts.5 Stable elements and their congences markedly affect the

89 90

accumulation of radionuclide in piota. Extensive studies of ~“Sr, “~Sr,

137

(and Cs) have shown their ecological accumulation to be usually in-

verse functions of congenes stable element concentration, of calcium

(and potassium) in both aguatic and terrestial biota.8']]
The Bip‘s for Cs and Sr in freshwater fish have been correlated from

data from a number of studies in natural waters by Vanderploeg et a1.7

B. values may be estimated from site-specific concentrations of pot-

ip
assium and calcium in water according to the following:
1. <50 ppm sediment in unfiltered water

piscivorous fish, Bip(Cs) = 1.5 x 104/[K]W

nonpiscivorous fish, Bip(Cs) = 5 X 103/[K]W

2. >50 ppm sediment in unfiltered water

piscivorous fish, Bip(Cs) =3 x 104/[K]w

nonpiscivorous fish, Bip(Cs) =1 x 103/[K]W
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3. fish muscle

Bip(Sr) = exp {5.18 + 1.11 (s.e.) - 1.21 + 0.37 (s.e.) In [Ca]w} ,

where
[K]w = equilibrium concentration of K in the water (ppm),
[Ca]w = equilibrium concentration uf Ca in the water (ppm), and
s.e. = standard error of the mean.

Site-specific information should be used in estimating bioaccumulation
factors, especially for cesium in freshwater environmenfs, if precision
of ore order of magnitude is desired.

In the absence of site-specific information, values of B].p for
different nuclides have been tabulated. Table 5.1 presents the results

12 o

of an analysis f B._ values for strontium, iodine, and cesium in

ip
freshwater finfish taken from Vanderploeg et a1.7 Values of B1.p currently

13 for both treshwater and marine

used at Oak Ridge National Laboratory
species are shown in Table 5.2. The tabulation consists of selected
values from Thompson et a1.5 Most of these values have been calculated
from separate analyses of the stable elements in biota and water that
may not have originated in the same part of the world. Although these
. values are reasonable as shown by comparison with experiments in which
equilibrium between water and biota was attempted or attained, site
specific values may possibly exhibit wide variations from them.
Accidental releases have not been judged important in aqueous food

pathway assessments because of the availability of time for counter

meacures to be taken. A study was made of the accidental conseauences

of a nuclear submarine collision with a surface vessel in a harbor. The
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authors conclude that a single meal of fish or shell fish consumed before

the food supply was monitored would result in exposure within the range
14

of "acceptable" dose levels.
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Table 5.1 Results of a statistical analysis of
Bi (1iters/kg) for Sr, I, and Cs in
P freshwater finfish®

Element u o X
- Sr 2.4 1.8 60
I 3.5 0.61 41
Cs 7.2 0.86 1900

“Hoffman, F. 0.




Table 5.2 Values of Bip(1iter/kg) for various

elements in aquatic foods?

Freshwater Marine

Element Invertebrates Fish Invertebrates Fish
Na 1.7E + 01 2.0E + 01  1.0F 00 1.0E 00

1.0E + 05 1.0E + 05  1.0E + 04  1.0F + 04

1.0E + 02 7.5 + 02 4.0F 00 4.0E 00
Mn? 1.0E + 05  3.2E - 01° 5.0 + 04  3.0F + 03
Fe 3.26 + 03 1.0E+ 02 2.0E+ 04 1.0E + 03
Co? 1.0E 04 3.0E 02 1.0E + 04  1.0FE + 02
Ni 1.0E + 02 1.0 + 02 1.0E + 02  5.0F + 02
Zn 1.0E + 04  1.0E + 03  5.0F + 04  5.0F + 03
srP 3.0E + 02 1.0E 00 1.0E 00
Y 1.0E + 03 2.5+ 01  1.0E + 02  3.0F + O]
Zr 6.7E 00 3.3E 00 1.0E + 02 3.0F + 0]
Nb 1.0E + 02 3.0E + 04  2.0E + 02 1.0F + Q2
Tc 5.0E 00 1.5+ 01 1.0E+ 02  1.0E + 01
Ru 3.0F + 02 1.0E + 01  1.0E + 02  3.0F 00
Ag 7.7E + 02 2.3E 00 5.0E + 03  1.0E + 03
Sb 1.0E + 01 1.0E 00 1.0E + 03 1.0E + 03
Te 6.1E + 03  4.0E+ 02 1.0E + 02  1.0E + 01
12 4.0F + 02 1.0E + 02 2.0E + 01
cs? 1.0E + 03 5.0E + 01 3.0F + 0]
Ce 1.0E + 03 2.5 + 01  1.0E + 02  3.0F + 01
Pm 1.0E + 03  2.56 + 01  1.0E+ 03  1.0E + 02
Pb 1.0E + 02 3.0E + 02 1.0E+ 03  3.0E + 02
Bi 1.0E + 05 1.6+ 01 1.0E+ 05  1.5E + 01
Po 2.0E + 04  5.0E + 01  2.0E + 04  2.0F + 03
Ra 2,56+ 02  5.0E+ 01 1.0E+ 02  5.0E + 01
Th 5.0E + 02 3.0E + 01  2.0E + 03  1.0FE + 04
Pa 1.IE+02  1.1E+ 01 1.0E+ 01  1.0E + 01
U 1.0E + 02 1.0+ 01 T1.0E + 01  1.0E + 01
Np 4.0E + 02 1.0E+ 01 1.0E+ 01  1.0E + 01
Pu 1.0E + 02 3.5 + 02 1.0E + 02  3.5E 00
Am 1.0E + 03  2.56+ 01  1.0E+ 03  2.5€ + 0]
Cm 1.0E+ 03 2.5E+01  1.0E+ 03  2.5E + 0

gValues taken from ref. 7
Values taken from ref. 5

°Divided by [Mn]w water concentration of Mn (ppm).

unless otherwise indicated.
for freshwater; fish muscle.
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6. ADULT DIETARY INTAKE AND INHALATION RATES

Elizabeth M. Rupp

The internal radiation dose to man as a result of exposure to contaminated

air, water, and/or food is determined in part by the amount of material
which is incorporated into the human body via food and inhalation pathways.
Dietary parameters and inhalation rates‘considered in this study are as
follows:

1. the consumption of milk, UMap (Titer/year);

2. the consumption of water, ng (liter/year);

3. the consumption of fruits, leafy vegetables, below-ground

vegetables, other vegetables, grain, beef, other meats and

poultry, finfish, and shellfish, Ug (kg/year);

p
4, the volumetric inhalation rate, ng (m3/year).
Table 6.1 presents the annual average values of ingestion and inhalation
rates for adult individuals. While these factors are undoubtedly related
to age and individual variability, only adult values are given in Table 6.1
because the internal dose conversion factors provided in Sect. 7 are only
for adult individuals. A more detailed analysis of human dietary intake

and inhalation rates is given e]sewhere.]
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Table 6.1. Estimated values of ingestion and inhalation
rates for adult individuals

Item Average value Reference
--kg/year--
Fruits 68 2
Leafy vegetables 18 3
Below ground vegetables 28 2
Other vegetables 45 2
Grains (flour equivalent) 35 2
Beef 32 2
Other meats, poultry 63 2
Finfish 4.4 s 9
Shellfish 1.3 » 9
--liters/year--
Mi1k? 112 2
Tap water 93 10
Other beverages 400 10
—-m3/year--
Inhalation rate 8030 11

%Include all milk drinks, fresh cream, ice cream, and

small amounts of cheese.
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7. DOSE CONVERSION FACTORS

H. Robert Meyer
Donald E. Dumning, Jr.
David C. Kocher
Kathy K. Kanak

7.1 Introduction

The radiological impact to man resulting from operation of a nuclear-
related facility may be assessed by calculating the dose to individuals
and populations residing near the facility. There are a number of potential
modes of exposure to man from radioactive effluents released to the
environment by breeder reactor facilities. Modes contributing to the
vast majority of human exposure are inhalation, ingestion, immersion in
contaminated air, and exposure to contaminated ground surfaces. Dose
conversion factors are used to estimate the dose resulting from these

exposures.
7.2 Internal Dose Conversion Factors

Table 7.1 lists recommended dose conversion factors for inhalation
and ingestion of certain radionuclides determined to be of potential
significance in breeder reactor fuel cycles. These factors are taken
from recently prepared documents by Killough et a].] and by Dunning et
a].,2 and were calculated by the use of dosimetric criteria provided by
the International Commission on Radiological Protection3 and other
recognized authorities. These factors are computed with the computer
code INREM II, which approximates the solutions of differential equations

which model intake, translocation and metabolism of a radionuclide and

its progeny.
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The INREM II computer code utilizes an adaptation of the Task Group
Lung Model3 to describe radionuclide deposition and retention dynamics
within the respiratory tract. A catenary gastrointestional (GI) tract model
based on the transit times recommended by Eve4 simulates retention in the GI
tract. Retention in other organs is represented by multicompartment
models consisting of series of decaying exponential terms. Detailed
discussion of these models and assumptions is available in references
1 and 2.

In the context of radionuclides released during routine breeder reactor
fuel cycle operations, it is useful to consider the calculation of 50-year
dose commitments in terms of three radionuclide classes, based on effective
half-1ife of radionuclides in the human body. Depending on the organ under
consideration, one of several approaches will apply.

For radionuclides that have short biological half-times of residence
or short radiological half-Tives, the 50-year dose commitment would be
approximately the same as the annual dose. For example, all of the

220

dose commitment for Rn exposure (including radon daughters) is received

during the first year.
For radionuclides of intermediate longevity in humans, dose would
be accrued at a declining rate over the entire 50-year period, based on

models and associated parameters specific to the organ and nuclide of

232

concern. For example, U (physical T]/2 = 71.7 years) is retained in

bone according to the uranium retention function:

R (t) = 0.90 ¢"0-693 t/20 , o 14 -0.693 /5000

bone)
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where t is the time of residence in days. This expression indicates that
the initial component of retained uranium is removed rapidly in biological
processes with a hatf-time of 20 days. The second component in the
expression contributes the majority of the total 50-year dose commitment

from 232

U, at a rate which decreases with a half-time of 13.7 years.

For elements which are eliminated very slowly from the body, such
as plutonium, and which possess very long physical half-lives [T”2
(239Pu) = 2.4 x 104 years)], an individual will continue to accrue dose
after intake of the radioisotope at a relatively constant rate for the
entire 50-year period of interest. Under such conditions, the approximate
dose received during the year after the radionuclide enters the body is ob-
tained by dividing the dose commitment by 50. Thus, the approximate
average annual dose rate is only 1/50 of the dose commitment. If an
individual is exposed to effluents for a 20-year operating 1ife of the
plant, his annual dose rate during the twentieth year is about 20 times
the annual dose rate from one year of exposure.

These generalized observations are approximate]y correct for the
cohditions cited. However, a detailed calculation must be made to
determine the actual dose received in a given year.

Table 7.1 lists 50-year dose commitments for inhalation and ingestion
of those radionuclides of interest in this study. These dose equivalents
take into account the contributions of radioactive daughters formed by
decay of a parent within the body. Dissimilar migrations of daughter

elements are also considered. Where a choice of solubility class exists,
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based on a choice of the chemical form of a particular released radio-
nuclide, dose conversion factors for all solubility classes applicable
are listed. The reader is referred to Killough et a].,] Dunning et
a].,z or Morrow et a1.3 for detailed discussions of this subject. A
quality factor of 20 is used for alpha particles, as suggested by the
ICRP.°

While dose conversion factors have been calculated elsewhere for

22 target organs,]’2 the purposes of this report may be best served by

focusing on five organs of major interest from the standpoint of health
risk assessment. These organs are lungs, total body, ovaries, testes,

and total endosteal cells (sensitive cell layer in bone). Dose conversion
factors for lung are calculated as dose to the entire lung; this is
commonly identified as the "smeared lung" dose. Gastrointestinal

uptake fractions (small intestine: blood) are listed for radionuclides

in the final column of Table 7.1. The reader is referred to Killough et

a].] and Dunning et a].z for detailed discussion of this subject.

7.3 External Dose Conversion Factors

Tables 7.2 and 7.3 1ist external dose conversion factors for the
radionuclides of interest as discussed above. Dose conversion factors
for immersion in contaminated air are listed for: (1) g dose rate at
the skin surface of an exposed body (body surface), and (2) photon (y
and X-ray) dose rate to various body organs (lungs, ovaries, skeleton,
testes, and total body). Similarly, dose conversion factors for exposure
to radionuclides deposited on contaminated ground surfaces are calculated
for body surface and for the five organs, as above. These dose conversion

factors are from the report by Kocher.6
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Table 7.2 External dose conversion factors for,immersion in
contaminated air (millirem/yr/uCi/cm”)

Body surface Lungs Ovaries Skeleton Testes Total body
(8 dose rate) {v and x-ray dose rate)

3H 5.97E7 0.0 0.0 0.0 0.0 0.0
1he 4 .46E8 0.0 0.0 0.0 0.0 0.0
22Na 1.74E9 1.17E10 7.68E9 1.40E10 1.16E10 1.25E10
24Na 4.93E9 2.38E10 7.68E9 1.40E10 1.16E10 1.25E10
1Ay 4.14E9 7.09E9 5.96E9 7.97E9 6.00E9 7.50E9
S4Mn 3.49E7 4.25E9 2.41E9 5.14E9 4,35E9 4.51E9
55Fe 3.66E7 6.28E3 3.35E3 1.15E4 5.84E4 7.63E4
58Co 3.01E8 4.97E9 2.66E9 6.09E9 5.24E9 5.28E9
60Co 8.64E8 1.37E10 1.12E10 1.55E10 1.18E10 1.45E10
59N§ 3.97E7 1.05E4 5.59E3 1.91E4 9.31E4 1.27E5
657n 5.99E7 3.07F9 2.19E9 3.56E9 2.82E9 3.25E9
85Kr 2.25E9 1.15E7 4.58E6 1.48E7 1.37E7 1.23E7
88Kr 3.11E9 1.12E10 1.14E70 1.24E10 7.29E9 1.18E10
88Rb 1.82E10 3.70E9 3.64E9 4.06E9 2.48E9 3.88E9
895y 5.19E9 6.96E5 4.19E5 8.31E5 6.92E5 7.37E5
905y 1.76E9 0.0 0.0 0.0 0.0 0.0
90y 8.25E9 6.89E1 3.97E1 3.75E2 4.64E2 5.55E2
91y 2.39E8 2.72E9 1.15E9 3.48E9 3.17E9 2.91E9
91y 5.36E9 1.96E7 1.53E7 2.23E7 1.7287 2.07E7
957r 1.04E9 3.76E9 1.96E9 4.62E9 3.99E9 4.00E9
95Nb 3.91E8 3.90ES 2.07E9 4.77E9 4.10E9 4.14E9
99T¢ 7.60E8 0.0 0.0 0.0 - 0.0 0.0

. 103Ry 6.72E8 2.41E9 9.56E8 3.13E9 2.90E9 2.58E9
106Ry 9.10E7 0.0 0.0 0.0 0.0 0.0
103™Rpy 3.36E8 2.31E5 2.14E5 1.27E6 1.67E6 1.19E6

N 106Rh 1.25E10 1.06E9 5.00E8 1.33E9 1.19E9 1.13E9
llomAg 6.01E8 1.44E10 §.19E9 1.72E10 1.42E10 1.53E10
110pg 1.04E10 1.56E8 7.54E7 1.94E8 1.72E8 1.66E8
1255h 8.79E8 2.14E9 9.52E8 2.83E9 2.56E9 2.31E9
12577¢ 9.57E8 2.53E7 1.92E7 8.39E7 7.78E7 5.72E2
127"7¢ 7.22E8 6.88E6 5.24E6 2.34E7 2.23E7 1.61E7
1277e 2.00E9 2.48E7 1.09E7 3.44E7 3.13E7 2.69E7
1297 2.40E9 1.55E8 7.93E7 2.04E8 1.79E8 1.72E8
129Te 4,85E9 2.87E8 1.35E8 3.81E8 3.44E8 3.12E8
1291 4.84E8 2.52E7 1.90E7 7.63E7 6.34E7 4 .85E7
1311 1.71E9 1.95E9 9.03E8 2.73E9 2.46E9 2.12E9
133" 1.71E9 1.39E8 8.20E7 2.47E8 2.17E8 1.69E8
133%e 1.22E9 1.44E8 8.56E7 3.38E8 1.85E8 1.80E8
135 8.56E8 2.20E9 8.95E8 2.84E9 2.62E9 2.36E9
135Xe 2.82E9 1.27E9 6.87E8 1.96E9 1.74E9 1.41E9
134Cs 1.45E9 7.69E9 4.08E9 9.83E9 8.58E9 8.47E9
135Cs 5.08E8 0.0 0.0 0.0 0.0 0.0
135Cs 1.53E9 0.0 0.0 0.0 0.0 0.0
13774 5.67E8 3.04E9 1.45E9 3.79E9 3.35E9 3.24E9
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Table 7.2 {continued)

Body surface Lungs Qvaries Skeleton Testes Total body
(g dose rate) (v and x-ray dose rate)

Labee 8.22E8 8.66E7 4.83E7 1.75E8 1.10E8 1.04E8
1447Mp . 4.06E8 1.71E7 1.32E7 4.91E7 3.33E7 2.95E7
Lhbpy 1.07E10 1.77E8 1.59E8 1.G8E8 1.31E8 1.85E8
157py 5.59E8 1.71E4 8.90E3 3.38E4 2.02E4 1.98E4
151gp 1.80E8 9.91E2 9.26E2 5.73E3 7.81E3 5.62E3
Lsbp, 2.52E9 6.43E9  4.44E9 7.79E9 6.15E9 6.85E9
155g, 5.54E8 2.51E8  1.39E8 5.54E8 2.89E8 3.09E8
§82T1 4.39E9 1.10E7 6.55E6 1.31E7 1.10E7 1.16E7
208717 5.30E9 1.91E10  1.85E10 2.13E10  1.31E10 2.02E10
20517 6.10E9 1.18E10  1.02E10 1.39E10  1.01E10 1.25E10
209py, 1.77E9 0.0 0.0 0.0 0.0 0.0
210py, 3.13E8 4.94E6 3.97E6 1.32E7 6.72E6 7.56E6
iiéPb 4.06E9 2.57E8 1.30E8 3.28E8 2.87E8 2.75E8
21%pb 1.55E9 7.25E8  4.06E8 1.23E9 9.78E8 8.22E8
2 1oPb 2.61E9 1.25E9 6.14E8 1.86E9 1.61E9 1.37E9
210p 3.48E9 0.0 0.0 0.0 0.0 0.0
2llgg 8.20E7 2.28E8 1.07E8 3.33E8 2.95E8 2.50E8
iiisj 4.16E9 9.78E8 6.87E8 1.15E9 9.14E8 1.04E9
L uB 3.99E9 6.78E8 2.94E8 9.20E8  8.30E8 7.33E8
"1bpy 5.76E9 8.28E9 6.93E9 9.43E9 6.74E9 8.73E9
figp 0.0 4.33E4 2.38E4 5.26E4 4.49E4 4 .60E4
213p 0.0 1.55E5 8.32E4 1.89E5 1.62E5 1.64E5
21lbp 0.0 5.58E5 3.04E5 6.80E5 5.81E5 5.93E5
217p 0.0 1.52E6 6.14E5 2.01E6 1.86E6 1.64E6
219p 5.18E7 2.85E8 1.38E8 4.20E8 3.73E8 3.12E8
220p 0.0 2.82E6 1.18E6 3.61E6 3.30E6 3.02E6
222p 0.0 2.00E6 7.96E5 2.59E6 2.40E6 2.14E6
221¢ 8.18E7 1.56E8 9.06E7 2.59E8 2.19E8 1.75E8
223g 3.33E9 2.39E8 1.43E8 1.12E9 8.06E8 7.29E8
223p 6.43E8 6.39E8 3.33E8 1.12E9 8..06E8 7.29E8
22bp 1.84E7 5.04E7 2.80E7 8.06E7 6.99E7 5.61E7
225p 9.42E8 2.11E7 1.65E7 5.92E7 3.63E7 3.49E7
226p 3.11E7 3.37E7 2.00E7 5.87E7 4.68E7 3.82E7
228pa 1.14E8 1.68E-2  8.99E-3 3.08E-2  1.50E-1 2.04E-1
225p¢ 1.57E8 7.41E7 4.01E7 1.45E8 9.07E7 8.65E7
227p¢ 1.17E8 5.70E5 2.93E5 1.15E6 6.72E5 6.72E5
228pc 3.82E9 4.82E9 3.20E9 5.85E9 4.73E9 5.12E9
2271y 3.44E8 5.18E8 2.81E8 8.42E8 6.98E8 5.28E8
2281p 1.71E8 9.28E6 5.28E6 1.81E7 1.18E7 1.11E7
2297, 9.42E8 4.05E8 2.24E8 8.15E8 4.99E8 4.81E8
2307h 1.18E8 1.66E6  1.04E6 3.54E6  2.14E6 2.18E6
<3lry 1.47E9 6.09E7  3.44E7 1.3768  7.73E7 8.00E7
2321y 9.08E7 6.72E5 4.31E5 1.54E6 8.78E5 9.85E5
2347h 5.33E8 3.49E7  1.97E7 7.79E7  3.92E7 4.32€7
231ps 3.40E8 1.50E8 7.64E7 2.36E8 2.02E8 1.69E8
233py 1.70E9 9.51E8 4.67E8 1.51E9 1.22E9 1.06E9
2347p 7.30E9 5.78E7 3.55E7 7.05E7 5.71E7 6.15E7
234pgy 4.07E9 1.02E10  6.31E9 1.28E10  1.03E10 1.09E10
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Table 7.2 (continued)

Body surface Lungs Ovaries Skeleton Testes Total body
(g dose rate) {v and x-ray dose rate)

232y 1.36E8 1.11E6 6.84E5 2.38E6 1.52E6 1.60E6
233y 4 .24E7 1.43E6 7.23E5 2.93E6 1.71E6 1.79E6
234y 1.02E8 4.68E5 2.96E5 1.08E6 6.85E5 7.94E5
235y 2.73E8 7.58E8 4_.45E8 1.33E9 1.04E9 8.59E8
236y 8.58E7 1.51E5 1.15E5 4.13E5 3.05E5 4.01E5
238y 7.61E7 1.26E5 9.60E4 3.47E5 2.62E5 3.44E5
237Np 5.55E8 1.08E8 5.93E7 2.31E8 1.30E8 1.33E8
239Np 2.13E9 8.24E8 4.29E8 1.48E9 1.04E9 9.38E8
238py 7.45E7 1.21E5 8.25E4 3.53E5 3.17E5 4.30E5
gigPu 4.63E7 2.77E5 1.41E5 5.85E5 3.87E5 4.25E5

Pu 7.61E7 1.25E5 8.73E4 3.63E5 3.14E5 4. 24E5
241py 4.78E7 0.0 0.0 0.0 0.0 0.0
242py 5.94E7 1.05E5 7.19E4 3.00E5 2.54E5 3.42E5
24 1pm 1.59E8 7.64E7 5.49E7 1.90E8 8.98E7 1.04E8
243pm 1.39E8 2.10E8 1.28E8 4.68E8 2.40E8 2.68E8
2420m 6.91E7 1.22E5 7.77E4 3.88E5 3.54E5 4.88E5
243Cm 1.12E9 6.23E8 3.29E8 1.10E9 7.99E8 7.08E8
2h44Cm 5.99E7 6.27E4 3.72E4 2.38E5 2.74E5 3.82E5
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Table 7.3 External dose conversion factors for exposyre to
contaminated ground surface (millirem/year/uCi/Cm")
Body surface Lungs Ovaries  Skeleton Testes Total body
(8 dose rate) {v and x-ray dose rate)

3H 0.0 0.0 0.0 0.0 0.0 0.0

L4 0.0 0.0 0.0 0.0 0.0 0.0

22Na 2.22E5 2.20E6 1.40E6 2.64E6 2.21E6 2.33E6
2%Na 7.87E6 3.56E6 3.63E6 3.87Et6 2.38E6 3.76E6
Y1 6.00E6 1.23E6 1.04E6 1.39E6 1.04E6 1.30E6
54Mn 0.0 8.19E5 4,63E5 9.89E5 8.37E5 8.69E5
5S5Fe 0.0 1.9181 6.33E9 2.17E1 1.05E2 1.44E2
58Co 8.52E3 9.70E5 5.16E5 1.19E6 1.03E6 1.03E6
60Co 6.68E3 2.40E6 1.96E6 2.72E6 2.07E6 2.54E6
SON§ 0.0 2.23E1 1.19E1 4. Q7E1 1.98E2 2.71E2
557n 6.01E-4 5.56E5 3.96E5 6.44E5 5.12E5 5.88E5
E5¢y 1.26E6 2.36E3 9.42E2 3.05E3 2.83E3 2.53E3
88Ky 2.84E6 1.76E6 1.76E6 1.95E6 1.18E6 1.84E6
88Rb 1.95E7 5.96E5 5.76E5 6.56E5 4.07E5 6.24E5
895y 8.57E6 1.32E2 7.92E1 1.57E2 1.31E2 1.40E2
905y 2.74E5 0.0 0.0 0.0 0.0 0.0

90 1.31E7 1.19E-1  6.73E-2  6.44E-1 7.92E-1 9.65E-1
9 1%y 4 .41E5 5.54E5 2.35E5 7.09E5 6.46E5 5.93E5
91y 8.88E6 3.46E3 2.71E3 3.95E3 3.04E3 3.66E3
ERYAY 2.29E4 7.38E5 3.84E5 9.06E5 7.84E5 7.84E5
935Nb 0.0 7.61E5 4 .05E5 9.31E5 8.01E5 8.09E5
°°%Tc 0.0 0.0 0.0 0.0 0.0 0.0

103Ry 8.98E4 4 97E5 1.97E5 6.45E5 5.98E5 5.32E5
106Ry 0.0 0.0 0.0 0.0 0.0 0.0

103™Rh 0.0 2.32E2 2.22E2 1.41E3 1.94E3 1.36E3
1065h 1.70E7 2.11E5 9.87E4 2.66E5 2.39E5 2.25E5
110%ag 3.39E4 2.71E6 1.70E6 3.24E6 2.70E6 2.88E6
110pg 1.54E7 3.10E4 1.50E4 3.87E4 3.42E4 3.31E4
1255h 1.05E5 4,42E5 1.98E5 5.91E5 5.34E5 4.80E5
1257Tg 0.0 1.11E4 8.45E3 3.68E4 3.42E4 2.50E4
127M7e 3.66E4 3.10E3 2.37E3 1.05E4 9.96E3 7.21E3
1277¢ 8.24E5 5.25E3 2.30E3 7.28E3 6.62E3 5.69E3
129"Te 3.05E6 3.20E4 1.67E4 4 48E4 3.97E4 3.71E4
129Te 7.22E6 5.90E4 2.77E4 7.98E4 7.24E4 6.50E4
12971 0.0 1.32E4 8.89E3 4,02E4 3.41E4 2.57E4
1317 3.25E5 4,12E5 1.91E5 5.78E5 5.22E5 4 49E5
1337ye 0.0 3.58E4 2.19E4 7.05E4 6.23E4 4.77E4
133ye 1.56E0 4,01E4 2.45E4 9.70t4 5.79E4 5.57E4
1357ye 1.31E6 4 ,53E5 1.85E5 5.87E5 5.41E5 4 .87E5
135Xe 2.48E6 2.74E5 1.49E5 4.25E5 3.77E5 3.04E5
134Cg 5.17E5 1.57E6 7.99E5 1.94E6 1.69E6 1.67E6
135¢g 0.0 0.0 0.0 0.0 0.0 0.0

137¢s 3.99E5 0.0 0.0 0.0 0.0 0.0

137"Bq 1.19E6 6.06E5 2.91E5 7.59E5 6.70E5 6.47E5
Lh4hCe 0.0 2.04E4 1.16E4 4.19E4 2.65E4 2.50E4
14u7pp 0.0 6.47E3 4 ,98E3 1.85E4 1.26E4 1.12E4
lakpp 1.55E7 2.94E4 2.55E4 3.34E4 2.27E4 3.10E4
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Table 7.3 (continued)

Body surface Lungs Ovaries Skeleton Testes Total body
(g dose rate) {y and x-ray dose rate)

147pm 0.0 3.82E0 2.00E0 7.57E0 4.54E0 4.43E0
151gm 0.0 1.08EQ 9.98E-1 6.14E0 8.50E0 6.24E0
154Ey 1.77E6 1.20E6 8.15E5 1.47E6 1.15E6 1.28E6
155Fy 0.0 6.19E4 3.50t4 1.38E5 7.22E4 7.73E4
2071 6.69E6 2.09E3 1.24E3 2.49E3 2.08E3 2.21E3
208717 8.10E6 2.94E6 2.72E6 3.32E6 2.13E6 3.11E6
2097 9.62E6 2.08E6 1.74E6 2.49E6 1.82E6 2.22E6
209pp 4 .80E5 0.0 0.0 0.0 0.0 0.0
210pp 0.0 1.66E3 1.32E3 4.42E3 2.62E3 3.05E3
211pp 5.90E6 5.14E4 2.59E4 6.60E4 5.77E4 5.51E4
212zpp 2.01E4 1.61E5 9.02E4 2.75E5 2.16E5 1.83E5
214pp 9.16E5 2.68E5 1.32E5 4.02E5 3.45E5 2.96E5
210B4 4.51E6 0.0 0.0 0.0 0.0 0.0
211Bj 6.53E2 4.90E4 2.30E4 7.16E4 6.32E4 5.37E4
212p5 6.37E6 1.80E5 1.23E5 2.14E5 1.71E5 1.92E5
2134 5.36E6 1.42E5 6.14E4 1.93E5 1.74E5 1.53E5
214Bj 8.50E6 1.44E6 1.17E6 1.65E6 1.20E6 1.51E6
210pg 0.0 8.40E0 4.62E0 1.02E1 8.70E0 8.92E0
213pgp 0.0 3.01E1 16.2E1 3.68E1 3.15E1 3.20E1
214pg 0.0 1.08E2 5.91E1 1.32E2 1.13E2 1.15E2
217pt 0.0 3.17E2 1.28E2 4.18E2 3.88E2 3.41E2
219Rp 5.46E2 6.11E4 2.96E4 9.02E4 8.00E4 6.71E4
220Rn 0.0 5.76E2 2.41E2 7.38E2 6.75E2 6.16E2
221Fy 0.0 3.42E4 1.99E4 5.70E4 4,80E4 3.85E4
223Fy 3.53E6 5.91E4 3.69E4 1.20E5 7.30E4 7.39E4
223Ra 2.74E1 1.43E5 7.47E4 2.53E5 1.80E5 1.64E5
224Rga 0.0 1.0E4 6.11E3 1.76E4 1.52E4 1.22E4
225Ra 7.03E0 8.94E3 6.96E3 2.51E4 1.57E4 1.53E4
226Rg 0.0 7.43E3 4.41E3 1.30E4 1.03E4 8.45E3
228Ra 0.0 3.45E-5 1.84E-5 6.31E-5 3.07E-4 4.19E-4
225p¢ 0.0 1.70E4 9.17E3 3.34E4 2.11E4 2.04E4
227p¢ 0.0 1.31E2 6.75E1 2.69E2 1.70E2 1.77E2
228p¢ 4 .15E6 9.04E5 5.90E5 1.11E6 9.00E5 9.64E5
227Th 0.0 1.15E5 6.27E4 1.89E5 1.55E5 1.31E5
228Th 0.0 2.17E3 1.23E3 4,32E3 2.98E3 2.95E3
229Th 0.0 9.46E4 5.25E4 1.93E5 1.20E5 1.17E5
230Th 0.0 4.38E2 2.70E2 9.77E2 7.69E2 8.92E2
231Th 0.0 1.55E4 8.85E3 3.65E4 2.37E4 2.55E4
23271h 0.0 2.09E2 1.31E2 5.11E2 4.77E2 6.10E2
234Th 0.0 8.57E3 4,87E3 1.93E4 9.95E3 1.11E4
231pa 0.0 3.31E4 1.70E4 5.33E4 4.64E4 3.96E4
233pa 2.00E4 2.08E5 1.02E5 3.31E5 2.68E5 2.34E5
23u"py 1.17E7 1.09E4 6.70E3 1.34E4 1.08E4 1.16E4
234pg 1.70E6 1.96E6 1.19E6 2.47E6 2.00E6 2.10E6
232y 0.0 3.40E2 2.04E2 8.33E2 8.24E2 1.05E3
233y 0.0 3.58E2 1.81E2 7.86E2 6.18E2 7.33E2
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Table 7.3 (continued)

Body surface Lungs Ovaries  Skeleton Testes Total body

(8 dose rate) (y and x-ray dose rate)
234y 0.0 1.77E2 1.07E2 4,82E2 5.53E2 7.43E2
235y 0.0 1.67E5 9.80E4  2.93E5 2.31E5 1.91E5
236y 0.0 9.96E1 6.17E1 3.12E2 4,43E2 6.21E2
238y 0.0 8.59E7 5.32E1 2.71E2 3.89E2 5.46E2
237Np 0.0 2.64E4 1.46E4 5.78E4 3.49E4 3.60E4
239Np 3.58E4 1.84E5 9.58E4 3.33E5 2.33E5 2.13E5
238py 0.0 1.08E2 5.90E1 3.88E2 5.59E2 7.97E2
239py 0.0 9.11E1 4,56E1 2.44E2 2.71E2 3.60E2
24 0py 0.0 1.06E2 5.91E1 3.78E2 5.36E2 7.64E2
<4lpy 0.0 0.0 0.0 0.0 0.0 0.0
242py 0.0 8.47E1 4.69E1 3.00E2 4.24E2 6.03E2
241pm 0.0 2.20E4 1.58E4 5.50E4 2.69E4 3.16E4
243pm 0.0 5.23E4 3.21E4 1.22E5 6.05E4 6.79E4
242¢0m 0.0 1.21E2 6.29E1 4.94E2 6.28E2 9.05E2
243Cm 0.0 1.39E5 7.33E4 2.48E5 1.80E5 1.62E5
244Cm 0.0 9.80E1 4.91E1 4,.21E2 5.59E2 8.07E2




93

It is important to emphasize that contributions from daughter nuclides,
which may be present in a given source term or which will build up due to
decay of the pérent radionuclide, are not included in the parent nuclide's
dose conversion factor. Care must be taken, when preparing a source term
to be used in the calculation of dose from a fuel cycle facility, to
include such daughter nuclides as will build up during the exposure period
in question, either during atmospheric transport or following deposition.
External dose conversion factors for all significant daughters of breeder
cycle radionuclides of interest have also been included in Tables 7.2 and
7.3, to be used in such calculations. The reader is referred to Kocher6 for

a detailed discussion of this methodology, and for diagrams of half-Tives

and branching fractions of radionuclides of interest.
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14

8. DOSES DUE TO ATMOSPHERIC RELEASES OF 3H AND " °C

Elizabeth L. Etnier
.. 3
8.1 Tritium (°H)

8.1.1 Introduction

Various methodologies exist for the estimation of ingestion dose

from continuous atmospheric releases of tritium.]'7

Most of these

methodologies are based on the specific activity model (according to

which the tritium content of the plant or body water, related to the

content of stable hydrogen, is the same as that of the water in air),

but the resulting dose estimates may vary by up to a factor of 10 depending

on the equilibrium assumptions employed for vegetation, beef, and milk.
Bush,] Evans,2 Killough and McKay,3 and Moore4 base their dose

calculations on the assumption that body hydrogen or body water is

uniformly labeled with tritium (an equilibrium ratio of 1.0). However,

1 and Evans2 estimate

their approaches are somewhat different in that Bush
dose based on the average energy delivered by HTO to body water that '
contains 1 uCi/Titer. Killough and McKay,3 and Moore,4 follow the food
and water ingestion pathway.

The U.S. Nuclear Regulatory Commission,5 and Ng et a].6 assume
various uptake fractions for tritjum in plants, beef, and milk, resulting
in doses 1/4-1/2, respectively, those estimated by the Killough and
McKay,3 and Moore4 methodologies.

Vogt7 recommends modifying the basic specific activity model so as

to consider the water supply of plants from the soil water and precipita-

tion deposited on the leaves, as well as that from humidity.
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A review of the Titerature available for estimating dose from atmospheric
releases of tritium, as well as the range of reported values for the input
parameters is being undertaken at.the Oak Ridge National Laboratory (ORNL).
Parameters being considered include: quality factor, half-life, air-to-
water dilution, and organic binding of tritium.

At present, the methodology outlined in the AIRDOS-EPA computer code8
is being employed at ORNL for estimating tritium doses. This methodology
has been modified slightly from that reported by Moore4 and may be
modified further to reflect the changes suggested by the literature review
in progress.

8.1.2 The AIRDOS-EPA methodology for °H

The AIRDOS-EPA code8 treats tritium in the following manner: if
tritium (T) is released to the atmosphere as HT or T2, atoms of T may
exchange with hydrogen atoms in water molecules in the air, and the plume
is treated as though it contained HTO initially. The tritium may then be
assumed to follow water almost precisely through the environment. For
this reason, doses from drinking water are included for tritium. Rather
than attempting to relate the doses to the ground deposition rate, it is
assumed that doses from ingestion of food and drinking water at an environ-
mental location are proportional to the tritium concentration in air.3

The total ingestion dose from tritium if the source of all of an
individual's food and drinking water is assumed to be at his specific en-

vironmental location is:

Dt = Cfx + wa > (8.1)

where

Dt'= tritium ingestion dose from food and water (rem/year),
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(]
1

£ dose conversion factor for food (rem-cm3/pCi-year),

dose conversion factor for drinking water (rem-cm3/pCi-year), and

(qp]
1

groundlevel concgntration of tritium in air at the environmental
Tocation (pCi/cm”).

The total-body dose conversion factor for ingestion is 8.3 x 10'5
rem/uC1.]0 This number is used to derive the value of Cf and Cw’ based

on the specific activity of tritium in atmospheric moisture with an

average specific humidity of 8 g HZO/m3 of air (ref. 3)f If tritium in

food is in equilibrium with atmospheric tritium and man consumes 1638 g of
water daily in his food, Cf is 6.18 rem-cm3/pCi-year. The Cw value for an
assumed daily drinking water intake of 1512 g is 5.70 rem-cm3/pCi-year.

This value is used, however, only if the source of each individual's drink-
ing water is assumed to be at his specific environmental location. For all
other cases, Cw is reduced to account for dilution by distant sources.

The code artificially breaks down the ingestion dose from tritium into
percentage contributions of 50.5% from vegetables (including fruits and
grains), 17.5% from meat and 31.0% from milk. The percentages are based
on approximate water contents of foods: 82.4% for vegetables, 62.3% for
meat, and 87.5% for milk, for daily intakes of 0.532 kg vegetables, 0.258 kg
meat, and 0.307 kg milk (Sect. 6).

Tritium doses via inhalation of air and skin absorption are estimated
by the code and added to the dose estimated to be received via ingestion.

10

The dose conversion factor for inhalation of air containing tritium

includes a 50% contribution for skin absorption from air.
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8.2 Carbon-14 (%)

8.2.1 Introduction

Methods for calculating dose to man from atmospheric releases of
]46 are also being reviewed. Basically, these methods involve a specific
activity approach, although they differ in their treatment of pathways.
The NRC (ref. 5) assumes that the ratio in vegetation of ]4C to natural

146 to natural

carbon is the same as the ratio in the atmosphere of
carbon. The ingestion of 146 in foods, including various transfer
coefficients for vegetation-to-beef and vegetation-to-milk, is then used
to calculate the ultimate dose to man. For intermittent releases, an
account is made for achievement of a fractional equilibrium ratio by
relating total annual releases time to the total annual time during
which photosynthesis occurs.

The methodology currently in use at ORNL, and described in the

AIRDOS-EPA code,8 assumes that the 14

14

C in body tissues is in equilibrium
with the "C in the atmosphere during continuous releases. Since about
99% of the dose from ]4C is via the ingestion pathway,9 a breakdown

based on percent contribution to diet of the three major food pathways,
as well as the carbon content of each food, is utilized in the AIRDOS-

EPA code to facilitate a pathway analysis.

14C

14

8.2.2 The AIRDOS-EPA methodology for

C in the AIRDOS-EPA code® is
14

The description of the treatment of
as follows: if 14C is released in the form of COZ’ it will mix with
atmospheric C02 and become available for plant photosynthesis. Cattle

. . .1 } . .
grazing on pasture will take in 4C in grass, and then man will receive
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it in milk and beef. Factors in a data statement are used in the code

14

to multiply by the concentration of " 'C in air to obtain an ingestion

dose for each reference organ. These dose conversion factors, listed in

14

Table 8.1 are based on specific activity calculations for " 'C in body

14

tissues in equilibrium with "~ 'C in the atmosphere.9

]4C dose comes from ingestion. An artificial breakdown

Nearly all the
by the three food pathways is accomplished by estimating carbon intakes for
vegetables, milk, and meat, based on a carbon content of approximately 8%

for vegetables, 24% for meat, and 7% for milk.
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14

Table 8.1. Dose conversion factors for ' °C

Dose conversion factors®

Organ 3.
(rem-cm~/pCi-year)
Whole body 1.16 x 10°
Red marrow 2.03 x 103
Lungs 5.07 x 102
Endosteal cells 1.85 x 10°
Stomach wall 7.43 x 10°
Lower large intestine wall 8.92 x 102
Thyroid 5.27 x 10°
Liver 7.30 x 10°
Kidneys 6.49 x 102
Testes 4.46 x 10°
Ovaries 4.46 x 10°

These factors are taken from ref. 8 and are based on
the assumption that the specific activity in human tissue
is equal to the average steady state value in the
atmosphere (ref. 9).
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Releases of radionuclides to the environment from nuclear facili-

ties, including breeder reactors, are generally either airborne or
waterborne. In either case, there are several pathways by which humans
may be exposed to radioactivity from either type of release. The main
body of this report presents information on the models and parameter
values which may be used to estimate the dose to humans as a result of
these exposures. The purpose of this appendix is to illustrate for
both release types the relative contribution of various pathways of
exposure to the total dose due to radionuclide releases from various
nuclear facilities.

This comparison is accomplished through a review of pathway com-
parisohs performed for various facilities of the light water reactor
(LWR) fuel cycle.

The primary reference for the discussion of atmospheric releases
was published by Hoffman and Kaye.] Most of the data mentioned here
were taken from tables published in that paper. A primary reference for
the importance of various pathways following an aquatic release is a
paper by Soldat2 from the same symposium volume. While these examples
do not include breeder reactor facilities, the models used in these
comparisons are.basica11y the same as those discussed in this report.
As such, they should serve the illustrative purposes desired for this
appendix. Further, no single comparison. or sets of comparison can
define the critical pathway or pathways to man from a given type of
facility since any such comparison depends on the radionuclide make-up

of the release, the rate of release, the dietary and behavioral habits
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of the human receptor, and the existence of a particular pathway at a

given site.

A.1 Atmospheric Release

Hoffman and Kaye] calculated the maximum individual exposure from
the major terrestrial pathways for atmospheric releases from model LWR
fuel cycle facilities. Each model facility resulted in a dose to the
organs of some 1imiting individual (adult, child or both) after assuming
a generic location and respiratory parameters designed to maximize the
exposure to humans via that pathway. These doses were then compared to
applicable radiation standards to assess the significance of the particu-
lar pathway. For each facility, the principal nuclides and principal
exposure pathways for organs of the 1imiting child or adult were Tisted.
Rather than reproduce those seven tables here, we have summarized the
information in Table A.1. A reader desiring the detail of the original
report should see Tables 8-14 of ref. 1.

There are several observations about the pathways which may be made
from the information in Table A.1. One conclusion is that for the con-
sidered release and human behavioral conditions milk is an extremely
important pathway of exposure, especially for children. Of the 31
entries in the rightmost column in Table A.1, "principal pathways for
principal nuclides," 16 are milk ingestion. Milk ingestion was often
the most important pathway of radiation exposure when children alone
were considered.

For adults, milk ingestion was slightly less important, but milk,
vegetable, and beef ingestion still accounted for one-half of the prin-

cipal pathway entries. Immersion in contaminated air was an important
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Table A.1 Principal pathways and nuclides for maximally exposed individuals
from model facilities in the uranium fuel cycle

S0 Limiting Principal Reference Principal pathways
urce ; L > b
receptor nuclides organ for principal nuclides
Uranium mill Child 226R3 Bone, lung, Milk (93-94%)
thyroid,
total body
Adult 226p4 GI, liver Milk (58-59%)
238y GI Vegetables (58-80%)
21upg Kidney, liver Vegetables (67%)
2307 Kidney, liver Inhalation (97%)
210pp Liver Vegetable (80%)
Conversion facility Child 226R4 Lung, thyroid, Milk (93%)
total body
234y Lung Inhalation (93%)
Adult 2307k Bone, kidney Inhalation (97-98%)
226Ra Bone Milk (60%)
Uranium enrichment Child 234y Bone Milk (56%)
facility 234y Lung Inhatlation (92%)
Fuel fabrication plant Child 234y Bone Milk (56%)
Boiling water reactor Child 1517 Thyroid MiTk (99%)
88Kr Thyroid Immersion in air (100%)
Adult 88pp GI Inhalation (72%)
88Kp GI Immersion in air (100%)
Child/Adult 88Ky Bone, skin, Immersion in air (100%)
. total body,
lung, liver,
kidney
t4c Bone, total Milk (88%)
body
133%e Skin Immersion in air (100%)
83Rp Lung, liver, Immersion in air (59-76%)
kidney
Fuel reprocessing Child 1317 Thyroid Milk (96%)
12971 Thyroid, total Milk (59-75%)
body, kidney
905y Bone, Tlung Milk (83-93%)
3y Bone, liver, Milk (54-96%)
total body,
kidney, lung
134(Cg Liver Milk (84%)
lag Bone, total Milk (88%)
body
Adult 12971 Thyroid Milk (46%)
1317 Thyroid Milk (77%)
106pRy, Gl Beef (99%)
Child/Adult 85Ky Skin Immersion in air (100%)

“Data taken from Tables 8-14 of ref. 1.

bRange of percentages indicates the contribution by the principal nuclide to the organs
of reference over the listed pathway.
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pathway for the boiling water reactor and the fuel reprocessing plant.
Inhailation was a principal pathway for adults subject to releases from
uranium mill and the uranium conversion facilities and for children near
uranium enrichment facilities. Exposure to contaminated surfaces was
found to be relatively unimportant for the releases considered in this
paper.

As might be expected, the principal radionuclides released were not
- the same for each facility type. Important releases early in the fuel
cycle tend to be composed of naturally occurring radionuclides, while
the principal radionuclides released by the reactor and reprocessing
plant are more frequently fission products.

It is apparent from this brief discussion that the importance of
the various pathways of exposure is very much a function of the nuclides
released. Therefore, it follows that the importance of any pathway
varies between types of facilities and within types of facilities,
depending upon the particular radionuclides present and the emission con-
trol equipment installed.

Studies similar to the one of Hoffman and Kaye] were performed by
various authors, but for specific types of facilities and for population
dose commitments rather than maximum individual doses (Table A.2). The
data in Table A.2 from these studies are not identified by radionuclide,
but the conclusions drawn from Table A.1 hold for these other studies;
namely, ingestion and inhalation appear to be the most important pathways,
but the relative rankings of the pathways varies between and within
facility types due to differences in assumptions about radionuclide

releases and environmental transport factors.




"A3L{1oB) 3y3 1hoge suoLjdwnsse pue WUd) 924N0S UL S3DUAUDJJLP 4O 3Shedaq 4d44Lp
s3(nsas 8yl que|d Buissedodded e pue || LW B y30q PIUSPLSUOD § puUB £ SIDUBUBYAJ Y30g,

¥ [-32°9 L-3€°1 1-32°2 2-31°¢€ pPuLssesoJday
€ Z-36'6 L-3£°§ [-32°L 1-32°¢ pPuLssadouday
uoryes
¥ -1t 1-31°2 = €-30 1> -l4qey (and
€ €-30°8 [-38°6 2-30°1 €-30"1> 3PLX0 PaxLy
[e))
S ¢ 1-36 ¢ 1-361 L-32°¢ €-30° 1> on
uoried
-l4gey [any
t L-3v L 1-36°1 1-30°1 €-30" 1> oLLIW
€ [-35°6 2-36"1 €-30°2 - €-30° 1> pLLLW
SAJUBU343Y uotysabur uolye|eyus aoejduns punoub UoLSudUIT 3111084

pajeuLWeIuo0)
Juswy Lwwod asop uotje(ndod B[ Lw oG 40 uoLydeA

AyLpLoey ayy o uoijedado Jo aeak uad saseajad snoaseb wouy Ari|Loey a2k any
4oea S0 sa|lw 0§ utyitm uorie|ndod ayj 03 Juaw}LUWOD BSOP JBIA-0G BY} 4O UOLIIBU4 7'y 3iqe]




110

A.2 Aquatic Releases

We are aware of no paper examining the importance of various aquatic
pathways which is directly comparable to the paper by Hoffman and Kaye.]
An adjoining paper by So]dat2 in the same volume discusses "only the
potential aquatic exposure pathways, including drinking water, aquatic
foods, swimming and boating, contaminated sediments, and crops and
animal products from irrigated farms." So]dat2 goes on to say that the
importance of the various pathways cannot be evaluated without knowing
the release rates and physicochemical form of the radionuclides, the
type of water receiving effluent and its use by humans.

Given these precautions, Soldat2 discusses several studies of
population doses from aquatic releases and attempts to compare the
importance of the various pathways. Results from the studies cited by
So]dat2 and two additional studies are summarized in Table A.3. Different
assumptions were used in each of these so care must be exercised when
comparing them.

However, these four studies do reaffirm the point made in the
atmospheric section that the importance of the pathway varies greatly
depending on the organ of concern, the type of release, and the assumptions
made when calculating doses, as well as the relationship between the
calculated dose and a dose limit. The only apparent exception to this
rule is the swimming pathway which, for the studies referenced, never
contributed more than 3% of the total calculated dose.

Aside from the constant small contribution of the swimming pathway,

the relative importance of the various pathways changes frequently due to
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Table A.3 Fraction of the calculated total dose from one or more radionuclides
listed by aquatic pathway in several studies

Fraction of total dose contribution from
radionuclide given by

Organ Radionuclide Sgg;ggsgf Dr;gi;:g inSliZion Irrigation Swimming Reference
Total Mixed LUR 0.54 0.46 Ne? NC? b
body
Mixed LWR 0.27 0.54 0.19 NC e
Mixed LMFBR 0.89 0.03 0.06 0.03 4
3 Waste burial  0.71 0.01 0.27 d 8
90g. Waste burial  0.07 0.93 8
106p,, Waste burial  0.62 0.11 0.27 8
137¢s Waste burial  0.11 0.75 0.14 8
Thyroid Mixed LUR 0.97 0.03 NC NC B
' Mixed LWR 0.63 0.13 0.25 NC e
3y Waste burial  0.71 0.01 0.27 8
’ 90, Waste burial  0.92 0.08 8
106g, Waste burial  0.22 0.04 0.75 8
137¢5 Waste burial =~ 0.13 0.87 8
Bone Mixed LUR 0.52 0.48 NC NC b
Mixed LWR 0.08 0.71 0.21 NC o
Mixed LMFBR 0.97 0.03 4
3 Waste burial  0.71 0.01 0.27 8
905, Waste burial  0.45 0.04 0.52 8
- 106p,, Waste burial  0.62 0.10 0.28 8
137¢5 Waste burial 0.1 0.80 0.09 8

%No calculation (NC) pathway not considered.

bRobbins and Martin6 as cited by So]dat.2

“Schuckler, Kalckbrenner, and Bayer7 as cited by So]dat.2
dContribution of this pathway is less than 1% of the total
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changes in the assumptions used in the calculations. The drinking

water pathway contributes from 8 to 97% of the total dose. The fish
ingestion pathway varies from negligible (Tess than 1%) to as much as
87%. Finally, the irrigation pathway contributed from less than 1% to
as much as 93%. It is important to remember that the range of con-
tributions of each pathway may not be completely specified in Table A.3;
site specific considerations for almost any parameter or variable in the
dose equations may significantly alter the contribution td dose of any
given parameter.

Likely the most reasonable conclusion of this short review is that
no single aquatic pathway to man dominates the dose calculations.
Rather, the only pathway which is not very important, primarily as a
result of low exposure possibility, is the swimming pathway. The only
time this pathway would 1ikely become important is if the other pathways

were nonexistent at the site being considered.
A.3 Relative Contribution of Atmospheric vs Aquatic Releases

In general, an examination of the references cited in this appendix
as well as other reference sources indicates that, for both individual
and population doses, atmospheric releases from nuclear facilities are
expected to contribute a larger fraction of the dose to humans than are
aquatic releases. One reason for this expectation is that the source
term for atmospheric releases is generally higher than the source term
for aquatic releases. Also, humans tend to have more interaction with
ajrborne than with waterborne radionuclides. However, variations between -

sites can be large enough that conditions prevailing at a specific site
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should be considered when attempting to determine the relative importance
of aquatic or atmospheric exposures in the calculation of a specific

maximally exposed individual or population dose.
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The body of this report presents models and parameter values which
may be used to assess the impact on man of radionuclides released to
the environment by breeder reactor and other nuclear facilities. The
purpose of this appendix is to illustrate how these models and parameter
values are used in numerical calculations. Example problems are solved
for environmental concentrations and subsequent doses to humans as a
result of releases to the atmosphere and surface waters for a limited
number of nuclides. While the examples considered are far from ex-
haustive when compared to those that might be encountered in a real
assessment situation, it is hoped that these cases will be of assis-
tance to persons attempting such calculations for the first time or
to those who simply need to understand how such calculations are made.
Also, these problems could be used as a partial check of computer
implementations of material contained in this réport.

When solving these example problems, reference is made to the
location in the main body of the report where the equation, methodol-
ogy, or parameter value being used is originally presented. The reader
should consult the referenced locations for a complete definition of
all of the terms used in solving the sample problem.

In the main body of this report, information is presented on the
statistical distribution associated with the parameters whenever in-
formation on the distribution could be obtained. In this appendix,
mean values of these parameters are used in the example calculations.
It must be_emphasized that the selection of the mean value was an

arbitrary one for illustrative purposes only, and such use here does
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not constitute a recommendation that mean values be used for all
assessment calculations. In addition, the release rates used in these
example problems were also chosen arbitrarily, and no relationship
between them and actual release rates from breeder reactors or any

other nuclear facilities was intended.

B.1 Environmental Concentrations

B.1.1 Releases to the Atmosphere

B.1.1.17 Air concentration from a ground-level release. Assume
2 131

an annual release of 1 x 10 ¢ Ci of 12 from a ground level (H = 0 m)
source under Pasquill atmospheric stability category D. Because of the
release height, the Pasquill-Gifford values of oy and o, should be used
in the Gaussian plume model, Eg. (2.1). From Table 2.7, forya downwind

distance of x = 2000 m,

oy = (a]1n X + az)x (B.1)
= (-0.0059[1n 20007 + 0.11)(2000)
= 130 m,

and
G. = == exp(b, + b, Tn x + b, 1n%x) (B.2)
z 2.15 1 2 3 :

= 5 }5 exp(-1.35 + 0.793[1n 2000] + 0.0022[ 1n 20007%)
=57 m

Equation (2.8) for plume depletion cannot be solved analytically.

However, values of the ratio the plume depletion fraction, for

Q"
Q b
Vg = 1 cm/s and u = 1 m/s can be obtained from Fig. 5.5 of Meteorology
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and Atomic Energy — 1968 (ref. 1). For a downwind distance of 2000 m,

a release height of 0 m, and Pasquill D stability, Fig. 5.5 gives

Q - 0.35. Assume that the actual wind speed for the 131

Q

being considered here is 3 m/s. Further assume that vd(total) =

I2 release

3.5 cm/s (Sect. 2.2.1) and Vo = 1.3 cm/s (ref. 2). This results in a

t
total deposition velocity of 4.8 cm/s. The value of 8— noted above

can now be changed to reflect the assumed release conditions by

(B.3)

A~
AL
s
[AS]
1l
A
=
._l
<
N
<
-

(1 m/s)(4.8 cm/s)
(0.35)(3 m/s)(1 cm/s)

i

0.19

This indicates that the deposition processes considered here result
in an air concentration at 2000 m that is 19% of the air concentration
that would be expected if these deposition processes were not consid-
ered.

The half-life, tl/Z’ of ]311 is 8.05 days (ref. 3). Therefore,

the radiological decay constant, A, is 9.96 x 10-7 s_].
Equation (2.1) may be used to calculate the ground-level, center-

line air concentration. Accounting for decay and plume depletion,

Eg. (2.1) becomes

(B.4)
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Q=1x 1072 Cisyear = 3.2 x 10720 ¢iys
(3.2 x 10710 Ly
X = | s ey ey O ([9-96E-71[2000/3]) | (0.19)
= 8.7x 10 ci/m’

The 22.5° sector average air concentration, based on Eq. (2.2), is

given by
Y = [Z;Qéé_g eXp(‘Aé)} (81)2 (B.5)

Xuo
Z

[ (2.032)(3.2 x 10710 &)

(2000 m)(3 m/s)(57 m)

exp (-[9.96E-7][2000/3])] (0.19)

-16 Ci

03

= 3.6 x 10

B.1.1.2 Air concentration from an elevated release. Assume an
85

annual release of 100 Ci of ““Kr from a 100-m tall stack. Since Kr
is a nonreactive gas and it has a half-life of 10.76 years (ref. 3),
radiological decay and plume depletion need not be considered in this
calculation. Using the Brookhaven dispersion parameters for this
elevated release and assuming class B] stability and a downwind dis-
tance of 2 km, Table 2.2 gives

9,
, = PX (B.6)

0.86]

Q
I}

(0.33)[(2000 m)
230 m
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If-u =4 m/s, the 22.5° sector-average air concentration for this

release is, from Eq. (2.2),

2
y = 20320 .. {-1/2(2—) } (B.7)

XUo
z z

(2.032)(3.2 x 107° gi 0 a\ 2
R I IO T ks ————-) }

3.2 x 10712 ¢i/m’

B.1.1.3 Ground deposition. The rate of dry deposition onto the

earth's surface is given by Eq. (2.4) as

d = xvy (B.8)

Using the information contained in Sect. B.1.1.1 for a ground-level

atmospheric release of ]311

29

. Vq = 3.5 cm/s
x=3.6x 10 '® ci/m3
and
d = XV
= (3.6 x 1071® ci/m®)(3.5 x 1072 w/s)
= 1.3 x 107" ci/m-s
= 4.7 x 1072 pCi/m-h

B.1.1.3.1 Concentration on grass. The concentration in and on

grass as a result of the deposition rate calculated above is given by

Eq. (3.1) as




R{1 - exp(-AEite)] . Biv[l - exp(-Aitb)]

vV o_ -
C1. = di Vo PA. exp( )\ith) (B.9)
v Ei 1

The input parameter values for this case are

di =4.7 x 10-2 pCi/mZ-h (from above),
R =2 nf/kg (Table 3.1),
v
- -3 -1
AEi =6.4 x 10 h (ref. 4) ,

t_ =720 h (Table 3.7),

B. =2.0x 107" (Table 3.2),

3 h_] (ref. 3),

A = 3.6 x 10
P = 215 kg/m (Table 3.6),
L = 8.76 x 10° h (assumed),
= 0 (Table 3.7)

131

The resulting concentration of I in or on the grass is

c¥ = 15 pCi/kg .

B.1.1.3.2 Concentration on fresh produce. Equation (B.9) can

also be used to estimate the concentrations in and on fresh produce

131

as a result of the deposition of 1 considered above. Assuming this

fresh produce is leafy vegetables, the input parameter values for this

case are
di =4.7 x 10-2 pCi/mz-h (from above),
R =0.2 (Table 3.1),
Y, = 1.9 kg/n’ (Table 3.1),
Aps = 6.4 x 1073 h1 (ref. 4),
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t, = 1440 h (Table 3.7),

B, =5.5x 1072 (Table 3.3),
A= 3.6 %1070 0! (ref. 3),
P = 215 kg/m® (Table 3.6),
tb = 8.76 X 103 h (assumed),

t, = 336 h (Table 3.7).

Entering these values into Eq. (B.9) results in a concentration of

]311 in or on leafy vegetables of

¢Y = 2.3 x 1071 pCi/kg

B.1.1.3.3 Concentration in milk. Assume that both beef and dairy

cattle are getting 100% of their food from the grass considered in

131

Sect. B.1.1.3.1. The resulting concentration of I in milk produced

by these dairy cattle is, from Eq. (3.2),

M

Ci =

V -~
Fm Ci QF exp( Aitf) (B.10)

The input parameter values are

F o= 1.0 x 1072 day/Titer (Table 3.4),
C¥ = 15 pCi/kg (see above),

Qp = 15.6 kg/day (Table 3.6),

tf = 4 days (Table 3.7),

A, = 8.6 x 1072 day ! (ref. 3),

resulting in

¢ = 1.6 pci/Titer.
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B.1.1.3.4 Concentration in beef. Similarly, the concentration
131

of I in beef may be found using Eq. (3.4),

F

C; =
j

chgqF exp(-A;t,) (B.11)

and the new input values of

F.=7 x 1072 day/kg (Table 3.5),

f

and

e
1]

20 days (Table 3.7).

This calculation results in

¢k = 2.9x 107!

;= pCi/kg .

B.1.2 Release to Surface Water

B.1.2.1 Surface water concentrations. The fundamental form of

the model for surface water concentration without sorption is given
by Eq. (4.1). This model cannot be solved in general, however, without
resorting to computerized numerical techniques. If, however, we assume
a vertical line source emitting a constant W Ci/s, a closed form solu-
tion of Eq. (4.2) can be obtained (ref. 5). If we further assume a
uniform, straight, rectangular channel in which the water flows, the

solution to Eq. (4.2) is given by (ref. 5)

® nznzxk H
C. = g 1+2 2: exp |- — Y cos2 {559)
n=1

(B.12)

2

1 uy
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where

Q
b

total river flow (m3/s),

cross-stream location of sampling point (m), and
the other parameters are as defined for Eq. (4.2). Using flow param-

eters based on Hudson River data (ref. 6) and a discharge rate of 1

Ci/s of ]37Cs, the input parameter values are
W=1x10°ciss,
Q = 1600 m3/s,
Ky =5 mz/s,
u=20.6ms,
y = 600 m,
x = 2000 m,
b=200m.

Considering only the first three terms of the series expansion,

3 2 2 m -2
-6 n“r~[2000 m][5—]
Ci _ {1 x 10 "Ci/s) 1+ 2 2: S

3 exp | - 5
(1600 m~/s) n=1 [0.6 m/s]1[600 m]

. {cosz (nn[ZOO m])}
[600 m]

(6.2 x 107701 + 2¢0.16 + 0.04 + 0.02)]

=9 x 1010 ci/m’
-13 .. 4
9 x 10 Ci/liter
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B.1.2.2 Concentration in fish. Assume that freshwater finfish

inhabit the stream considered above. The concentration CFi (Ci/kg)

137

of Cs in these fish is given by

CFi = B, C. . (B.13)

If we further assume that no site-specific information is available
on the concentration of K in this stream, a mean value of Bip can be

obtained from Table 5.1. This results in

1

(1900 Titer/kg)(9.1 x 107 '3 Ci/Titer)

CF.
i

1.7 x 1072 Ci/kg

B.2 Dose Calculations

B.2.1 External Doses

B.2.1.1 Immersion in contaminated air. The external dose rate to

an individual immersed in contaminated air is given by (ref. 7)

R?? =Dy X (B.14)
where
R?? = dose rate to organ j due to immersion in air contaminated
with radionuclide i (millirem/year),
D?? = dose conversion factor due to immersion in air for radio-
nuclide i and organ j (millirem/year per pCi/cm3),
a

concentration of radionuclide i in air (pCi/cm3).

>
-y
1
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From Sect. B.1.1.1 above, a 22.5° sector-averaged air concentration

for a ground-level release of ]3112 was found to be
x3 = 3.6 x 107'® ci/m’
=3.6 x 1070 yci/em® .

From Table 7.2 the dose conversion factor for the B dose rate to the

body surface from ]3112 is found to be

pead 9

ij = 1.71 x 10° millirem/year per pCi/cm3 .

Therefore, for this release the annual B dose rate to the body surface

is

' . . 3 .
ea _ 9 millirem cm -16 uCi
Rij =(1.71 x 10 vear pCi)(3’6 x 10 3)

cm

6.2 x 10—7 millirem/year .

Similar calculations can be performed for other organs listed in Table

7.2. The resulting y and X-ray dose rates for all organs considered are

as follows:
Organ Dose rate, millirem/year
Body surface 6.2 X 10_7
Lungs 7 X 10-7
Ovaries 3.3 x 10~7
Skeleton 9.8 x 1077
Testes 8.9 x 107/
Total body 7.6 x 10-7

Section B.1.1.2 gives an air concentration for an elevated release

of 85

Kr,
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12 ¢/

12

3.2 x 10

>
n

3.2 x 1072 yci/em®

Using Eq. (B.14) and Table 7.2, the annual B and photon dose rates for

this release condition are found to be the following:

Organ Dose rate, millirem/year
Body surface 7.2 x 10-3
Lungs 3.7 x 107°
Ovaries 1.5 x 10_5
Skeleton 4.8 x 10_5
Testes 4.4 x 107
Total body 3.9 x 107°

B.2.1.2 Exposure to contaminated ground. The external dose rate

to an individual as a result of exposure to a radionuclide deposited on

the ground is found from (ref. 7)

1 - exp(-At)
cg _ T cg 4
Rij di AT Dij (8.64 x 107) , (8.15)
where
R?? = dose rate to organ j due to exposure to ground contaminated
with radionuclide i (millirem/year),
di = rate of deposition onto ground of radionuclide i (pCi/cmz-s),
AT = radioactive decay constant Ar + environmental decay constant
-1
A, (day ),
t = time allotted for surface buildup (days),
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D?? = dose conversion factor for radionuclide i and organ j due
to surface exposure to an infinite plane at a point 1 m
above ground (millirem/year per pCi/cmZ),

8.64 x 107 = s/day.

Section B.1.1.3 gives a dry deposition rate onto the earth's surface

131

resulting from a ground-level release of 1

2’

1.3 x 107V ci/mé-s
-15

d;

1.3 x 107 "2 uci/en?-s .

If a one year surface buildup time and no losses from the surface

due to weathering effects are assumed, then

_ _ -2 -1
A=A, =861 x10°d ",
=365 d
and
. -2.,-1
cg _ -15 pCi (1 - exp[-§8.61 x 10 “d “31{365 di])
Ri‘ = (1.3 x 10 > ) 7 -1
J em©es (8.61 x 10°¢ d™ %)

. 4 s\ nCg
(8.64 x 107 2) D].j

= (1.3 x 1072 EE%) p<9
' cm 1

Values of D?g for various organs may be found in Table 7.3 For the B

dose rate to the body surface from ]311,

11 2
cg _ 5 millirem _ cm
Dij 3.25 x 10 Vear eI
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Therefore, for this tissue,

- 3 3 2
cg -9 pCi Smillirem cm
R = (1.3 x 10 Cmz)(B.ZS x 107 —aar ucT)

= 4.2 x 10 milliren/year.

Similar calculations for the remaining organs listed in Table 7.3 com-

plete the following table of dose rates:

Organ Dose rate, millirem/year
Body surface 4.2 x 1074
Lungs 5.4 x 10-4
Ovaries 2.5 x 10—4
Skeleton 7.5 x 1074
Testes 6.8 X 10_4
Total body 5.8 x 1074

B.2.2 Internal Doses

B.2.2.1 1Inhalation dose. The dose rate to various organs of the

body as a result of inhaling contaminated air is given by (ref. 7)

R?g =x28, D?g , (B.16)
where
R?g = dose rate to organ j due to breathing air contaminated
with radionuclide i (rem/year),
X? = concentration of radionuclide i in air (E%i),
5 m
Br = breathing rate (yZar) ,
D?E = dose conversion factor for radionuclide i and organ j due

to breathing of contaminated air (rem/uCi intake).
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From Table 6.1,

B, = 8.03 x 10° u’/year.
131

From Sect. B.1.1.1 for IZ’
x3 = 3.6 x 10718 ¢i/md
=3.6 x 10710 yci/m®

From Table 7.1 for the thyroid,

br rem
D]J = 1.13 k]
The resulting annual dose rate to the thyroid for this release of ]3112
is then
RST = (3.6 x 10710 EXly(g.03 x 10° ——E—)(1 13 rem
] ) year %]

m

3.3 x 1070 rem/year

i

3.3 x 10_3 millirem/year.

The doses to the remaining organs listed in Table 7.1 are also estimated

from the application of Eq. (B.16) and included in the following:

Organ Dose rate, millirem/year
Thyroid 3.3 x 10'3
Lungs. 6.9 x 6
Total body 1.8 x 10 s
Ovaries 1.2 x 10 -7
Total endosteal cells 6.4 x 10 -7
Testes 6.4 x 10 -8
. . . . 85

Note that inhalation calculations are not made for ~~“Kr since it is
. assumed that the inhalation doses from noble gases are insignificant

when compared to air immersion doses.
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B.2.2.2 Ingestion doses. The calculation of dose to humans as

a result of ingestion of contaminated food is analagous to the calcula-

tion of inhalation doses as expressed by Eq. (B.16) (ref. 7),

Rfj = c;ufol, (B.17)
where
jo = dose rate to organ j as a result of eating food contaminated
with radionuclide i (rem/year),
Ci = concentration of radicnuclide i in the food of interest
(uCi/kg or uCi/liter),
U? = rate of intake of the food of interest containing radio
nuclide i (kg/year or liter/year),
ng = dose conversion factor for radionuclide i and organ j due
to ingestion of contaminated food (rem/uCi intake).
B.2.2.2.1 Ingestion of fresh produce. The concentration of ]311

131

in leafy vegetables from the ground-level release of 12 being con-

sidered in this appendix was found in Sect. B.1.1.3.2 to be

c.=cy=23x 1071

i

pCi/kg

2.3 x 1077 uCi/kg.

Table 6.1 gives an annual average adult intake rate for leafy vegetables
of

U. = 18 kg/year ,
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assuming all of the leafy vegetables a person consumes are grown in
the area effected by the release being considered. From Table 7.1

131

the ingestion dose conversion for i = I and j = thyroid is found

to be

f _ .
Dij = 1.81 rem/uCi

It follows from Eq. (B.17) that the dose rate to the thyroid in this

example is
RT. = (2.3 x 1077 uCi/kg)(18 —KL)(1.87 &N
ij ’ H g year”* "7 pCi

7.5 x 10-6 rem/year

7.5 x 1073 millirem/year.

The dose rates to other organs from the ingestion of ]311 in leafy

vegetables are also calculated from Eq. (B.17):

Organ Dose rate, millirem/year
Thyroid 7.5 x 1073
Lungs 1.2 x 10_6
Total body 3.7 x 107°
Ovaries 2.5 X 10_7
Total endosteal cells 1.4 x 107°
Testes 1.5 x 10-7

B.2.2.2.2 1Ingestion of milk. From Sect. B.1.1.3.3 the concen-
131

tration of I in milk for the release being considered here is

(]
i

(]
3
I

1.6 pCi/liter
6

1.6 x 10 ° pCi/liter
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Once again assuming all of the milk a person consumes comes from the
area surrounding the release being considered, Table 6.1 gives an

annual average adult intake rate for milk
f_ .
Ui = 112 liter/year.

The appropriate dose conversion factors may again be found in Table 7.1.
131

For i = I and j = thyroid, it is again found that
pf. = 1.81 rem/uCi
1] ’ H
Applying Eq. (B.17), the dose rate to the thyroid is
Rjj = (1.6 x 10°% uCi/1)(112 1iter/year)(1.81 rem/uCi)

3.2 x 10—4 rem/year

3.2 x 10-] millirem/year.

Similar calculations for the dose rate to other organs due to the

ingestion of ]311 in milk are included in the following:

Organ Dose rate, millirem/year
Thyroid 3.2 x 107!
Lungs 5.1 x 10_5
Total body 1.6 x 1074
Ovaries 1.1 x 107°
Total endosteal cells 6.0 x 10-5
Testes 6.2 X 10-6

B.2.2.2.3 1Ingestion of meat. The dose to various organs as a

]311 in meat may also be found using Eq.

result of the ingestion of

(B.17) and the following input parameters:

=ci=2.9x 107!
1 1
7

2.9 x 10

]
1]

pCi/kg (Sect. B.1.1.3.4),

uCi/kg
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32 kg/year (Table 6.1),

of .
]

I}

values for various organs found in Table 7.7.

If we again assume that the person consumes only beef raised in the
area influenced by the release under consideration, the dose rates that

result are as follows:

Organ Dose rate, rem/year
Lungs 2.6 x 1077
Total body 8.2 x 10-9
Ovaries | 5.7 x 10710
Total endosteal cells 3.1 x 10-9
Testes 3.3 x 10-]0
Thyroid 1.7 x 107°

B.2.2.2.4 1Ingestion of fish. Equation (B.17) may also be used

B to calculate the dose due to the ingestion of fish containing ]37Cs
as calculated in Sect. B.1.2.2. From that section,
C.=CF, =1.7 x 10°° Ci/k
= 1.7 x 1073 uCi/kg .
. Table 6.1 gives, for freshwater finfish,
uf = 4.4 kg/year .
The dose conversion factors for i = ]37Cs are also found in Table 7.1.

For j = total body,

of. = 4.91 x 10°

1]

2
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Assuming all of the fish consumed by this person contains Ci’ the

resulting annual dose rate to the total body is v

-3 E__ kg -2 rem
i (1.7 x 10 )(4.4 year)(4 91 x 10 IJC1)

el
1

i

3.7 x 10 -4 rem/year

3.7 x 107" millirem/year.
Similar calculations give the additional results included below for the

other organs Tisted in Table 7.1:

Organ Dose rate, millirem/year
Total body 3.7 x 107
Lungs 1.5 x 10—]
Ovaries 5.6 X 10_]
Total endosteal cells 6.0 x ]0_]
Testes 5.0 x ]O—]

B.2.3 Tritium and Carbon-14 Dose Calculations

B.2.3.17 Tritium doses. Assume 3H is being released from an

elevated source under the meteorological and location conditions con-

sidered for the 85Kr release in Sect. B.1.1.2. From this section,

X =1.0x 10°

Q s/m

If we assume for this 3H release that Q = 1 x 10_6 Ci/s, then the air

concentration is

1.0 x 10712 ¢i/m’
-6

>
N

1.0 x 10°° pci/em’

The total ingestion dose from 3H for food and water can be calcu-

lated using Eq. (8.1),
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Dt = Cfx +Cx - (B.18)

Using the values of Cf and Cw found in Sect. 8.1.2, the 3H ingestion

dose for the release considered here is

3 .
_ rem-cm -6 pCi
D, = (6.18 ECT:§EEF) (1.0 x 10 Cm3)

3 .
rem-cm -6 pCi

I

1.2 x 107° rem/year

1.2 x 1072 millirem/year.

The dose due to the inhalation and skin absorption of 3H is found

from Eq. (B.16). For the total endosteal cells,

x3 = 1.0 x 107° pei/m’,
B = 8.03 x 10° m*/year (Table 6.1),
D?g = 9.85 x 10°° rem/uCi (Table 7.1),
and
br -6 uCi 3 m3 -5 rem
ROT = (1.0 x 10 Hg—)(s.oz x 10° 22-2)(9.85 x 1077 T

1] m

7.9 x 1077 rem/year
7.9 x 1074 millirem/year.

?T =1.25 x 10-4 resulting

For all other organs listed in Table 7.1, D1J

br 3

ij
B.2.3.2 Carbon-14 doses. Assume that ]4C02 js released with the

in R2% = 1.0 x 10 ° millirem/year.

3H considered in Sect. B.2.3.1. As a result,
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é =1.0x 10°° s/m°

for this release situation also. If Q = 5.0 x 10—7 Ci/s,

5.0 x 10_]3 Ci/m3

><
Il

7 pCi/cm3

5.0 x 10~

According to Sect. 8.2 the primary dose to man from 14C is via the
ingestion pathway. This dose rate for various organs is equal to the

product of the concentration of 14

€ in air and the appropriate dose
conversion factor listed in Table 8.1. The resulting dose rates from

the air concentration noted above are as follows:

Organ Dose rate, millirem/year
Whole body 6.0 x 107
Red marrow 1.0

Lungs 2.5 % 10—]
Endosteal cells 9.0 x 10-]
Stomach wall 3.8 x 107
Lower large 4.6 x 10-]

intestine wall

Thyroid 2.7 x 10-1
Liver 3.6 x 107!
Kidneys 3.3 x 107
Testes 2.2 X 10-]
Qvaries 2.2 X ]0_]
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